• Title/Summary/Keyword: scanning microscopy

Search Result 5,747, Processing Time 0.04 seconds

Effects of sonication on physicochemical properties and pore formation of maize starch (초음파처리가 옥수수전분의 이화학특성과 기공 형성에 미치는 영향)

  • Choi, Eun-Hee;Lee, Jae-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.507-512
    • /
    • 2017
  • The physicochemical properties of maize starch sonicated at various amplitudes (100, 200, and 300 W) and times (10, 30, and 50 min) were examined. The amount of enzyme-susceptible starch increased marginally after sonication. Sonication increased the amount of oil absorbed in the starch although the degree of oil absorption decreased with an extension of the sonication time, implied that different types and extent of damages occurred. Scanning electron microscopy revealed that ultrasound sonication did not form pores on the surfaces, but caused damages such as depression and erosion. Pasting viscosity of starch decreased with an increase in the severity of sonication conditions because of the weakened polymer network. X-ray diffraction suggested that the crystalline domains in starch were not susceptible to sonication and were more resistance to degradation. Sonicated starch formed more pin-holes on the surfaces in the initial glucoamylase reaction; subsequently, as the reaction proceeded, porous starch with enlarged pores was formed and finally, disrupted granular fragments were observed.

Physiological and Structural Damages in Acorus calamus var. angustatus as Native Aquatic Plants to Cadmium (카드뮴에 의한 수생식물 창포의 생리적·구조적 장해)

  • Lee, Sung-Chun;Kim, Wan-Soon
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.371-377
    • /
    • 2012
  • This study was conducted to investigate the physiological and structural damages to cadmium (Cd) in Acorus calamus var. angustatus as a native aquatic species in Korea. In addition to the physiological responses such as plant growth, photosynthesis, and root activity, the structural damages in leaf and root tissues were observed through light and scanning electronic microscopy. The five-leaf plants were treated with different Cd concentrations 0, 10, 25, and 50 ${\mu}M$ for 15 days. The plant damages to Cd were significant at 10-25 ${\mu}M$ Cd physiologically and at 25-50 ${\mu}M$ Cd structurally. The physiological damages in the shoot part (photosynthesis) started at 10 ${\mu}M$ Cd whereas those in root part (root activity) were serious above 25 ${\mu}M$ Cd. On the other hand, the structural damages began at 25 ${\mu}M$ Cd in the leaf and root tissues similarly, but the plant tissue destruction was more serious in the roots than in leaves. Based on the plant physiological and structural damages, 10 ${\mu}M$ was assumed to be the limited concentration for sustainable growth and landscaping ability in Acorus calamus var. angustatus to Cd.

The Preparation of Activated Carbon from Coffee Waste: ZnCl2-Activation (커피폐기물을 이용한 활성탄의 제조: ZnCl2-활성화)

  • You, S.H.;Kim, H.H.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.509-515
    • /
    • 1998
  • Activated coffee chars were prepared from coffee waste by chemical activation with zinc chloride. In this study, the following processes were carried out ; roasting step, carbonization step, chemical activation step, and washing and drying step. The roasting step of coffee waste was carried out at $300{\sim}400^{\circ}C$ for 10 minutes. The optimum condition of carbonization was at $650^{\circ}C$ for 1 hour. The most important parameter in chemical activation of coffee char was found to be the chemical ratio of activation agents. Activated coffee chars prepared by various activation methods were characterized in terms of the nitrogen BET surface area, the BJH pore volume and pore size distribution at 77 K. The $N_2$-BET surface areas and total pore volume of coffee chars prepared by the chemical activation with $ZnCl_2$ were determined as about $1110{\sim}1580m^2/g$ and $0.51{\sim}0.81cm^3/g$, respectively. Scanning Electron Microscopy (SEM) was used to observe the porosity and surface of activated coffee chars. From the results of SEM analysis, it was shown that active surface and many pores were formed after the chemical activation. The preparation of the activated coffee char from coffee waste was successfully carried out, which previews a possibility for exploitation of resources by recycling the waste.

  • PDF

Quality Characteristics of Sulgidduk Added with Fresh Sweet Potato (생고구마를 첨가한 설기떡의 품질특성)

  • Oh, Hyun-Eui;Hong, Jin-Sook
    • Korean journal of food and cookery science
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2008
  • In this study, we evaluated the quality characteristics of sweet potato Sulgidduk produced with varying amounts of fresh sweet potato, after three days of storage. The more fresh sweet potato was added, the higher were the levels of crude protein and crude lipid; however, crude ash contents were lowest in the control sample, and no significant differences in this value were detected among the samples to which fresh sweet potatoes were added. Moisture contents evidenced a tendency to decrease with increases in the amount of added fresh sweet potato and increased storage time, but pH rose with increases in the amount of added sweet potato. Total cell counts showed a tendency toward decrease with increases in the amount of added fresh sweet potato. L values tended to be low with increases in the amount of added fresh sweet potato and a values were lowest immediately after its production, although no consistent tendencies were noted in correlation with the amount of added fresh sweet potato. b values tended to increase directly with the amount of added sweet potato . With increasing storage time, the L and a values decreased, whereas the b value tended to increase. Upon textural assessment, it was observed that hardness, adhesiveness, springiness, gumminess, and chewiness(all textural components except for cohesiveness) increased with increasing quantities of added fresh sweet potato, and these factors also tended to increase with the progression of storage time. After observation via scanning electron microscopy(SEM), it was noted that the cohesiveness also increased with increasing amounts of added sweet potato. With regard to the sensory evaluation, the samples to which 15% fresh sweet potato had been added evidenced the highest acceptability in terms of color, flavor, and s0weetness, and softness and moistness in these samples decreased with increasing percentages of added sweet potato. It has been previously demonstrated that the addition of 15% fresh sweet potato resulted in optimal overall acceptability. In accordance with the aforementioned results, it has been verified that the use of fresh sweet potato in Sulgidduk is possible and probably desirable, and an addition of 15% sweet potato appears to be the optimal approach in terms of overall quality and functionality.

Cellular Responses and Morphological Changes of RDX-degrading Bacterium, Pseudomonas sp. HK-6 Exposed by Explosive Hexahydro-1,3,5-triaitro-1,3,5-triazine (RDX). (폭약 Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)에 노출된 분해세균 Pseudomonas sp. HK-6의 세포반응과 형태변화)

  • 장효원;강형일;김치경;오계헌
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.75-82
    • /
    • 2003
  • The cellular responses of RDX-degrading bacterium, Pseudomonas sp. HK-6 to explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were examined. Strain HK-6 grown at different RDX concentrations was found to demonstrate the survival rate in proportional to the rate of the stress shock proteins produced in this bacterium. Analysis of total cellular fatty acid acids showed that lipids 10:0 iso and 14:1 $\omega$5c/$\omega$5t increased approx three times in strain HK-6 grown on RDX media than TSA media. SDS-PAGE and Western blot using anti-DnaK and GroEL revealed that several stress shock proteins including 70 kDa DnaK and 60 kDa CroEL were newly synthesized in strain HK-6 exposed to different RDX concentrations in exponentially growing cultures. 2-D PAGE of soluble protein fractions from the culture of HK-6 exposed to RDX demonstrated that approximately 300 spots were observed on the silver stained gel ranging from pH 3 to pH 10. As a result, 10 spots were significantly induced and expressed in response to RDX. Scanning electron microscopy fur the cells treated with 0.135 mM RDX for 12 hrs showed the presence of perforations and irregular rod shapes with wrinkled surfaces.

Preparation of Nickel Coated-carbon Nanotube/Zinc Oxide Nanocomposites and Their Antimicrobial and Mechanical Properties (니켈 코팅된 탄소나노튜브/산화아연 나노복합소재의 제조와 항균 및 기계적 특성 분석)

  • Kim, Hyeon-Hye;Han, Woong;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.502-507
    • /
    • 2016
  • This study was conducted to develop novel antimicrobial nano-composites, with the aim of fully utilizing antimicrobial properties of multi-walled carbon nanotubes (MWCNTs), nickel (Ni) and zinc oxide (ZnO). Ni coated-MWCNTs (Ni-CNT) were prepared and evaluated for their potential application as an antimicrobial material for inactivating bacteria. Field emission scanning electron microscopy (FE-SEM), and X-ray energy dispersive spectroscopy (EDS) were used to characterize the Ni coating and morphology of Ni-CNT. Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil) were employed as the target bacterium on antimicrobial activities. Comparing with the nitric acid treated MWCNTs and Ni-CNT which have been previously reported to possess antimicrobial activity towards S. aureus and E. coil, Ni-CNT/ZnO exhibited a stronger antimicrobial ability. The nickel coating was confirmed to play an important role in the bactericidal action of Ni-CNTs/ZnO composites. Also, the addition of ZnO to the developed nanocomposite is suggested to improve the antimicrobial property.

Growth Promotion of Pavlova viridis by Bacteria Isolated from the Microalga (파블로바 비리디스로부터 분리한 세균에 의한 미세조류의 생장 촉진)

  • Ahamed, Sarker Anowarul Kabir;Kim, Jin-Joo;Choi, Tae-O;Choi, Tae-Jin
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.568-576
    • /
    • 2015
  • The marine microalga Pavlova viridis can grow fast and has the ability to accumulate essential nutrients for culturing marine animals, such as EPA and DHA, and it has been used as food for raring larval fish and prawn. The symbiotic relationship between the flagellate microalga Pavlova viridis and its associated bacteria was investigated. An axenic culture of P. viridis was obtained by repeated treatment of the microalga with an antibiotic cocktail. The axenic status was confirmed after sub-culturing three times in a sterile f/2 medium without an antibiotic. The axenic alga was then co-inoculated with five bacteria, arbitrarily designated as I1–I5, isolated from the alga to test the growth promotion of the algae. All bacterial strains promoted the growth of P. viridis, and bacterial isolate I3 was the most effective among the five bacteria tested. The cell number of P. viridis in the co-culture with I3 was significantly higher than that of the control culture. A sequence analysis of the 16S rRNA gene isolated from I3 revealed a 97% nucleotide sequence similarity to that of Citrobacter sp. The growth of strain I3 was also significantly enhanced by co-culturing with P. viridis, indicating a symbiotic relationship between the microalga and its associated bacterium. The association between the microalga and bacterium was confirmed by scanning electron microscopy.

Manufacturing Multi-degradable Food Packaging Films and Their Degradibility (복합분해성 플라스틱 식품포장 필름의 제조 및 분해성)

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.877-883
    • /
    • 2003
  • Multi-degradable master hatch (M/B) was prepared and 0.05 mm polyethylene (PP) food packaging films containing 0, 10, and 20% M/B were manufactured by inflation film processing. The films were exposed to UV radiation, fungi, and heat in order to observe their photolysis, biodegradability, and thermal degradability, respectively. While pure PP film maintained more than 70% of its original elongation after 8 weeks of UV radiation, an almost perfect loss in the elongation of PP film containing 20% M/B was observed. Significant decreases in elongation of PP films by heat treatment $(68{\pm}2^{\circ}C)$ were also found in samples containing the multi-degradable M/B. By observing changes in film surface after the inoculation of fungi using scanning electron microscopy (SEM), the biodegradability of plastic film could be accelerated with the addition of multi-degradable M/B. The results of the mulching test in yard showed that adding multi-degradable M/B can effectively degrade plastic films in natural environmental conditions without interrupting the growth of plants.

Synthesis and Functional Properties of Plastein from the Enzymatic Hydrolysates of Filefish Protein. 3. Functional Properties of Plasteins (말쥐치육 단백질의 효소적 가수분해물을 이용한 Plastein의 합성 및 그 물성 , 3. Plastein의 기능성)

  • KIM Se-Kwon;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.582-590
    • /
    • 1987
  • Plasteins were synthesized from a peptic filefish protein hydrolysate by papain, $\alpha-chymotrypsin$ and protease(from Streptomyces griceus) under the optimum conditions of previous paper. L-glutamic acid diethylester and L-leucine ethylester were incorporated into plastein during the plastein reaction by papain. The structural changes of freeze-dried filefish meat, peptic hydrolysate, FPC and plasteins were observed by Scanning Electron Microscopy(SEM). The functional properties of plasteins also were measured. The solubility of plasteins was higher than that of FPC and the Glu-plastein had $95\%$ solubility in the range of pH 3-10. The dispersibility of Glu-plastein and protease plastein was similar to that of egg albumin, but those of the other plasteins were lower. The water holding capacity of plasteins was lower than that of egg albumin and C. Lipid absorption of Leu-plastein was tile highest, holding 1.80 ml/g, and that of the other plasteins was similar to that of egg albumin. The emulsifying activity of Leu-plastein was the highest, holding $61.2\%$, and that of Glu-plastein was the lowest, holding $50.7\%$. The emulsifying stability of plasteins was similar to that of the emulsifying activity. The emulsifying capacity of Leu-plastein was 384 ml/g(the highest), but that of Glu-plastein and $\alpha-chymotrypsin$ plastein was 248 ml/g(the lowest). The Leu-plastein shelved the highest foaming capacity, $373\%$. The foaming capacity of other plasteins was higher than that of egg albumin. The foaming stability of plasteins was superior to that of egg albumin. The viscosity of plasteins was lower than that of egg albumin. The microstructure of $\alpha-chymotrypsin$ plastein by SEM wassimilar to that of papain plastein, but other plasteins showed differences in their microstructure. The microstructure of Glu-plastein had a smooth shape.

  • PDF

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.