DOI QR코드

DOI QR Code

Preparation of Nickel Coated-carbon Nanotube/Zinc Oxide Nanocomposites and Their Antimicrobial and Mechanical Properties

니켈 코팅된 탄소나노튜브/산화아연 나노복합소재의 제조와 항균 및 기계적 특성 분석

  • Kim, Hyeon-Hye (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Han, Woong (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • An, Kay-Hyeok (Department of Nano & Advanced Materials Engineering, Jeonju University) ;
  • Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
  • 김현혜 (한국탄소융합기술원 연구개발본부) ;
  • 한웅 (한국탄소융합기술원 연구개발본부) ;
  • 안계혁 (전주대학교 나노신소재공학과) ;
  • 김병주 (한국탄소융합기술원 연구개발본부)
  • Received : 2016.07.16
  • Accepted : 2016.08.14
  • Published : 2016.10.10

Abstract

This study was conducted to develop novel antimicrobial nano-composites, with the aim of fully utilizing antimicrobial properties of multi-walled carbon nanotubes (MWCNTs), nickel (Ni) and zinc oxide (ZnO). Ni coated-MWCNTs (Ni-CNT) were prepared and evaluated for their potential application as an antimicrobial material for inactivating bacteria. Field emission scanning electron microscopy (FE-SEM), and X-ray energy dispersive spectroscopy (EDS) were used to characterize the Ni coating and morphology of Ni-CNT. Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil) were employed as the target bacterium on antimicrobial activities. Comparing with the nitric acid treated MWCNTs and Ni-CNT which have been previously reported to possess antimicrobial activity towards S. aureus and E. coil, Ni-CNT/ZnO exhibited a stronger antimicrobial ability. The nickel coating was confirmed to play an important role in the bactericidal action of Ni-CNTs/ZnO composites. Also, the addition of ZnO to the developed nanocomposite is suggested to improve the antimicrobial property.

본 연구에서는 탄소나노튜브, 니켈 및 산화아연의 항균특성 활용을 목적으로 새로운 항균 나노 복합 재료를 개발하였다. 니켈 코팅된 탄소나노튜브의 제조 및 그들의 동시발생 집중 및 비활성 세균에 대한 항균소재의 잠재적 응용성을 평가하였다. 제조된 니켈 도금 탄소나노튜브의 형상 및 니켈 도금은 전계 방출 주사전자현미경(FE-SEM) 및 X선 에너지 분산 분광기(EDS)를 사용하여 분석하였다. 나노복합소재의 항균 특성을 확인할 수 있는 타깃 세균은 황색포도상구균과 대장균으로 지정하였다. 니켈 도금된 탄소나노튜브와 산 처리된 탄소나노튜브로 각각 강화된 나노복합소재의 황색포도상구균 및 대장균에 대한 항균특성을 비교하였을 때, 니켈 도금된 탄소나노튜브/산화아연으로 강화된 나노복합소재의 항균 특성이 더 우수한 결과를 보이는 것을 확인할 수 있었다. 이러한 결과에 따라서, 탄소나노튜브 표면에 도금된 니켈이 복합소재 내에서 세균의 살균 작용에 중요한 역할을 하는 것으로 판단할 수 있다. 또한, 첨가된 산화아연은 나노복합소재의 항균특성 향상을 목적으로 제안되었다.

Keywords

References

  1. D. Jeong, I. Song, and Y. Kim, Degrading and flocculating property of a bacterium isolated from the extract of earthworm, J. Korea Org. Resour. Recycl. Assoc., 14, 141-150 (2006).
  2. S. Yeo and G. Kim, The design and fabrication of unattended food waste treatment system, J. Korean Soc. Comput. Inf., 23, 95-98 (2015).
  3. M. Choi and T. Lee, Characteristics of microbial community and bio-hydrogen production from food waste, J. Korea Org. Resour. Recycl. Assoc., 20, 86-96 (2012).
  4. N. B. D. Thi, G. Kumar, and C. Lin, An overview of food waste management in developing countries: Current status and future perspective, J. Environ. Manag., 157, 220-229 (2015). https://doi.org/10.1016/j.jenvman.2015.04.022
  5. S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, and B. Vaseeharan, Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae, Spectrochim. Acta, A, 137, 886-891 (2015). https://doi.org/10.1016/j.saa.2014.08.064
  6. C. G. Otoni, P. J. P. Espitia, R. J. Avena-Bustillos, and T. H. McHugh, Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads, Food Res. Int., 83, 60-73 (2016). https://doi.org/10.1016/j.foodres.2016.02.018
  7. S. Jung, D. Kim, and J. Seo, Properties of LDPE composite films using polyurushiol (YPUOH) for functional packaging applications, Appl. Chem. Eng., 26, 23-28 (2015). https://doi.org/10.14478/ace.2014.1088
  8. M. Ramos, A. Jimenez, M. Peltzer, and M. Garrios, Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging, J. Food Eng., 109, 513-519 (2012). https://doi.org/10.1016/j.jfoodeng.2011.10.031
  9. S. Park, B. Kim, and J. M. Rhee, Antibacterial activity of activated carbon fibers containing copper metal, Polymers, 27, 235-241 (2003).
  10. R. Dastjerdi and M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties, Colloids Surf. B, 79, 5-18 (2010). https://doi.org/10.1016/j.colsurfb.2010.03.029
  11. L. Karimi, S. Zohoori, and A. Amini, Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking, New Carbon Mater., 29, 380-385 (2015).
  12. G. Jeon, S. Park, J. Seo, K. Seo, H. Han, and Y. C. You, Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films, Appl. Chem. Eng., 22, 610-616 (2011).
  13. H. Shi, H. Liu, S. Luan, D. Shi, S. Yan, C. Liu, R. K. Y. Li, and J. Yin, Antibacterial and biocompatible properties of polyurethane nanofiber composites with integrated antifouling and bactericidal components, Compos. Sci. Technol., 127, 28-35 (2016). https://doi.org/10.1016/j.compscitech.2016.02.031
  14. Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications, Water Res., 42, 4591-4602 (2008). https://doi.org/10.1016/j.watres.2008.08.015
  15. X. Liu, M. Wang, S. Zhang, and B. Pan, Application potential of carbon nanotubes in water treatment: A review, J. Environ. Sci., 25, 1263-1280 (2013). https://doi.org/10.1016/S1001-0742(12)60161-2
  16. S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, and B. Vaseeharan, Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae, Spectrochim. Acta, A, 137, 886-891 (2015). https://doi.org/10.1016/j.saa.2014.08.064
  17. S. Mallakpour and A. Zadehnazari, Preparation of dopamine-functionalized multi-wall carbon nanotube/poly (amide-imide) composites and their thermal and mechanical properties, New Carbon Mater., 31, 18-30 (2016). https://doi.org/10.1016/S1872-5805(16)60001-X
  18. N. G. Sahoo, S. Rana, J. W. Cho, L. Li, and S. H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym., Sci., 35, 837-867 (2010). https://doi.org/10.1016/j.progpolymsci.2010.03.002
  19. Ihsanullah, T. Laoui, A. M. Al-Amer, A. B. Khalil, A. Abbas, M. Khraish, and M. A. Atieh, Novel anti-microbial membrane for desalination pretreatment: A silver nanoparticle-doped carbon nanotube membrane, Desalination., 376, 82-93 (2015). https://doi.org/10.1016/j.desal.2015.08.017
  20. S. Dhall and N. Jaggi, Effect of oxide nanoparticles on structural properties of multiwalled carbon nanotubes, Theochem., 1107, 300-304 (2016).
  21. S. T. Kim, H. Y. Park, T. K. No, D. G. Kang, I. R. Jeon, and K. H. Seo, Effect of wrapping treatment on the dispersion of MWNT in CNT/ABS/SAN composites, Appl. Chem. Eng., 23, 372-376 (2012).