DOI QR코드

DOI QR Code

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars

알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구

  • Kim, Young-Soo (Department of Architectural Engineering, Pusan national University) ;
  • Moon, Dong-Il (Department of Architectural Engineering, Pusan national University) ;
  • Lee, Dong-Woon (Department of Architectural Engineering, Dongsoi University)
  • Received : 2011.04.15
  • Accepted : 2011.07.01
  • Published : 2011.08.20

Abstract

The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

연구의 목적은 반응성 골재를 함유한 알칼리 활성화 고로슬래그 미분말의 알칼리-골재반응으로 인한 팽창을 조사하기 위한 것이다. 또한 이 연구는 현재 존재하고 있는 반응성 골재와 알칼리 재료들의 거동과 관련하여 특별히 관여 되어 지고 있다. 실험 방법은 EDS, SEM을 통하여 알칼리-실리카 반응 생성물의 구성이나 미세구조를 관찰하였으며 알칼리-실리카 반응에 의한 모르터 바의 팽창정도를 측정하였다. 실험 결과에 따르면 알칼리-활성화된 모르터는 알칼리 실리카 반응 때문에 팽창이 되었지만 14일 재령에서 0.1%의 팽창률을 나타내어 알칼리-실리카반응에 대하여 안전한 것으로 나타났다. 그리고 촉진 실험 후 SEM과 BEM분석한 결과 골재 주변과 시멘트 페이스트에 알칼리-실리카 겔 및 띠 모양의 생성물이 나타난 것을 볼 수 있었다. EDX에 따르면 반응생성물이 알칼리 활성화 고로슬래그를 사용하였을 경우 현격히 감소한 것을 볼 수 있다. 추가적으로 광물학적 혼화재료의 대체 재료로써 콘크리트 내구성의 특성을 보증하기 위하여 알칼리 활성화 고로슬래그의 품질을 향상시키는 연구가 필요하다.

Keywords

References

  1. Jeong SJ. A study on the physical properties of alkali-activated fly ash as an Inorganic Binder [master's thesis]. Seoul (Korea): Han Yang University; 2007. p. 4-17.
  2. Fernandez-Jimenez A, Puertas F. The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cement and Concrete Research. 2002 July;32(7):1019-24. https://doi.org/10.1016/S0008-8846(01)00745-1
  3. Jeon SS. The effect of meta-kaolin replacement on alkai-silica reaction. Proceeding of 2004 Symposium on Korea Concrete Institut; 2004 May; PyeongChang (Korea). Seoul (Korea): Korea Concrete Institute; 2004. p. 360-3.
  4. Stanton TE. Expansion of concrete through reaction between cement and aggregate. Proceedings of the ASCE. Reston (VA): American Society of Civil Engineers; 1940. p. 1781-811.
  5. George J Z, Xu D W, and Peter H. Effectiveness of mineral admixtures in reducing asr expansion. Cement and Concrete Research. 1995 October;25(6):1225-36. https://doi.org/10.1016/0008-8846(95)00115-S
  6. Pettersson K. Effects of silica fume on alkali-silica expansion in mortar specimens. Cement and Concrete Research. 1992 May;22(1):15-22. https://doi.org/10.1016/0008-8846(92)90131-E
  7. Puertas F, Palacios F, Gil-Maroto A, Vazquez T. Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type. Cement and Concrete Composites. 2009 January;31(5):277-84. https://doi.org/10.1016/j.cemconcomp.2009.02.008
  8. American Standard Test Method. ASTM C 1260-94 ; Standard Test Method for Potential Alkali Reactivity of Aggregates(Mortar-Bar Method). ASTM annual book of ASTM Standards 2007. West Conshohocken, PA 19428-2959, United States. (June. 1, 2007)
  9. American Standard Test Method. ASTM C 490-97 ; Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete. ASTM annual book of ASTM Standards 2010. West Conshohocken, PA 19428-2959, United States. (December. 15, 2010)
  10. Kim YS, Jeong EJ, Lee DW. Magnesium sulfate resistance of concrete containing waste glass. Journal of Korea Institute of Building Construction. 2009 June; 6(3):109-18. https://doi.org/10.5345/JKIC.2009.9.3.109
  11. Kim YS, Jeong EC, Lee DW. Effectiveness of copper slag in reducing alkali-silica reaction expansion. Journal of Architectural Institute of Korea. 2009 July; 25(7):71-8.

Cited by

  1. A Study on the Improvement of Early-age Compressive Strength of Smart BFS Powder Added Cement Mortar vol.17, pp.2, 2013, https://doi.org/10.11112/jksmi.2013.17.2.135
  2. Physicochemical Characteristics and Carbon Dioxide Absorption Capacities of Alkali-activated Blast-furnace Slag Paste vol.17, pp.2, 2015, https://doi.org/10.7855/IJHE.2015.17.2.099