• Title/Summary/Keyword: scanning measurements

Search Result 741, Processing Time 0.026 seconds

Geo-location White Space Spectrum Databases: Models and Design of South Africa's First Dynamic Spectrum Access Coexistence Manager

  • Mfupe, Luzango;Mekuria, Fisseha;Mzyece, Mjumo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3810-3836
    • /
    • 2014
  • Geo-location white space spectrum databases (GL-WSDBs) are currently the preferred technique for enabling spectrum sharing between primary users and secondary users or white space devices (WSDs) in the very-high frequency (VHF) and ultra-high frequency (UHF) bands. This is true because technologies for making low-cost WSDs capable of autonomous sensing and detection of available white space (WS) spectrum are not yet feasible. This paper reviews the necessary enabling technical conditions to allow coexistence of primary and secondary systems in the VHF and UHF spectrum through a GL-WSDB approach. The practical implementation of South Africa's first GL-WSDB was performed. Results of WS channels available from five cities in South Africa calculated from the implemented GL-WSDB was compared with a commercially available GL-WSDB and was found to be 68% similar. Additionally, results from the implemented GL-WSDB were compared with measurements obtained from field spectrum scanning campaigns at two different locations in Cape Town, South Africa, and was found to be 64% similar.

Submicrometer Particle Size Distribution of Emissions from Diesel Engines (디젤엔진에서 배출되는 미세 입자의 크기 분포)

  • 김민철;권순박;이규원;김종춘;류정훈;엄명도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.657-665
    • /
    • 1999
  • Particulate matter produced by diesel engines is of concern to cngine manufactures because of its environmental impact. The majority of diesel particles are in the range of smaller than 1 ${\mu}{\textrm}{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Ultrafinc particles are known to have deleterious effects upon human health cspecially because they penetrate deeply human respiratory tract and have negative effects on the health. In this study, the engine exhaust gas was diluted in a dilution tunnel and the particle size distribution was measured using the scanning mobility particel sizer system. Measurements of the number and the mass concentrations of the diesel exhaust were made under different engine ooperating conditions. The dilution sampling system provided a common basis for collection of the exhaust by cooling and diluting the source emission prior to the measurement. The measurement results showed that the particle size distributions of the exhaust from the diesel vehicles equipment with either heavy-duty or lignt-duty diesel engines, were similar in the particle size range of 0.08~0.2${\mu}{\textrm}{m}$.

  • PDF

Microstructural Changes of Mayonnaise during Storage (마요네즈 저장 중 미세구조의 변화)

  • Song, Young-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.300-306
    • /
    • 1990
  • The microstrutural changes of mayonnaise during storage were examined by light microscopy (LM) and scanning electron microscopy (SEM). Fresh mayonnaise was composed of heterogenous population of dispersed spherical oil droplets and droplet size was normally distributed with one mode. During storage at $60^{\circ}C\;and\;-10^{\circ}C$, a shift in droplet size distribution toward larger droplets was observed, as a result of coalescence of lipid droplets. Turbidimetric study also confirmed that coalescence was occurring during this accelerated aging treatments. Measurements obtained from SEM microgrphs provided better determination of smaller droplets and resulted in lower mean diameter of droplets than those obtained from LM. From these results, SEM was found to be an advantageous method of examining emulsion products as compared to LM, providing a better resolution of small droplets and a more representative view of droplet distribution, as dilution of the sample was avoided.

  • PDF

Realization of 1D-2DEG Composite Nanowire FET by Selective Area Molecular Beam Epitaxy (선택적 분자선 에픽택시 방법에 의한 1D-2DEG 혼성 나노선 FET의 구현)

  • Kim, Yun-Joo;Kim, Dong-Ho;Kim, Eun-Hong;Seo, Yoo-Jung;Roh, Cheong-Hyun;Hahn, Cheol-Koo;Ogura, Mutsuo;Kim, Tae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1005-1009
    • /
    • 2006
  • High quality three-dimensional (3D) heterostructures were constructed by selective area (SA) molecular beam epitaxy (MBE) using a specially patterned GaAs (001) substrate to improve the efficiency of tarrier transport. MBE growth parameters such as substrate temperature, V/III ratio, growth ratio, group V sources (As2, As4) were varied to calibrate the selective area growth conditions and the 3D GaAs-AlGaAs heterostructures were fabricated into the ridge type and the V-groove type. Scanning micro-photoluminescence $({\mu}-PL)$ measurements and the following analysis revealed that the gradually (adiabatically) coupled 1D-2DEG (electron gas) field effect transistor (FET) system was successfully realized. These 3D-heterostructures are expected to be useful for the realization of high-performance mesoscopic electronic devices and circuits since it makes it possible to form direct ohmic contact onto the (quasi) 1D electron channel.

Extensional and Complex Viscosities of Linear and Branched Polycarbonate Blends

  • Park, Jung-Hoon;Hyun, Jae-Chun;Kim, Woo-Nyon;Kim, Sung-Ryong;Ryu, Seung-Chan
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.135-139
    • /
    • 2002
  • Blends of the linear bisphenol-A polycarbonate (L-PC) and randomly branched bisphenol-A polycarbonate (Br-PC), prepared by co-rotating twin screw extrusion, were investigated using differential scanning calorimetry (DSC), sag resistance time tester, extensional rheometry, and advanced rheometric expansion system (ARES). From the DSC results, the glass transition temperature (T$_{g}$) of the L-PC/Br-PC blend was increased with the increase of Br-PC in the blend, and the blend showed a single T$_{g}$, which suggests a miscible blend. The sag resistance time of the L-PC/Br-PC blend was increased with the increase of Br-PC in the blends. From the results of rheological measurements of the L-PC/Br-PC blends, the extensional viscosity and the complex viscosity of the blends were found to increase with the increase of Br-PC in the blends. The increase of extensional viscosity and complex viscosity was related with the increase of sag resistance time with the Br-PC in the L-PC/Br-PC blends.nds.

Synthesis and Properties of Partially Hydrolyzed Acrylonitrile-co-Acrylamide Superabsorbent Hydrogel

  • Pourjavadi, Ali;Hosseinzadeh, Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3163-3172
    • /
    • 2010
  • In this work, a novel method to synthesis of an acrylic superabsorbent hydrogel was reported. In the two stage hydrogel synthesis, first copolymerization reaction of acrylonitrile (AN) and acrylamide (AM) monomers using ammonium persulfate (APS) as a free radical initiator was performed. In the second stage, the resulted copolymer was hydrolyzed to produce carboxamide and carboxylate groups followed by in situ crosslinking of the polyacrylonitrile chains. The results from FTIR spectroscopy and the dark red-yellow color change show that the copolymerization, alkaline hydrolysis and crosslinking reactions have been do take place. Scanning electron microscopy (SEM) verifies that the synthesized hydrogels have a porous structure. The results of Brunauer-Emmett-Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 13.9 nm. The synthetic parameters affecting on swelling capacity of the hydrogel, such as AM/AN weight ratio and hydrolysis time and temperature, were systematically optimized to achieve maximum swelling capacity (330 g/g). The swollen gel strength of the synthesized hydrogels was evaluated via viscoelastic measurements. The results indicated that superabsorbent polymers with high water absorbency were accompanied by low gel strength. The swelling of superabsorbent hydrogels was also measured in various solutions with pH values ranging from 1 to 13. Also, the pH reversibility and on-off switching behavior makes the hydrogel as a good candidate for controlled delivery of bioactive agents. Finally, the swelling of synthesized hydrogels with various particle sizes obey second order kinetics.

Luminescence Properties of Blue Light-emitting Diode Grown on Patterned Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han;Wang, Lei
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.358-363
    • /
    • 2017
  • In this study, we present a detailed investigation of luminescence properties of a blue light-emitting diode using InGaN/GaN (indium component is 17.43%) multiple quantum wells as the active region grown on patterned sapphire substrate by low-pressure metal-organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman scattering (RS) and photoluminescence (PL) measurements are employed to study the crystal quality, the threading dislocation density, surface morphology, residual strain existing in the active region and optical properties. We conclude that the crystalline quality and surface morphology can be greatly improved, the red-shift of peak wavelength is eliminated and the superior blue light LED can be obtained because the residual strain that existed in the active region can be relaxed when the LED is grown on patterned sapphire substrate (PSS). We discuss the mechanisms of growing on PSS to enhance the superior luminescence properties of blue light LED from the viewpoint of residual strain in the active region.

Synthesis and Characterization of Brilliant Yellow Color Pigments using α-FeOOH Nanorods (α-FeOOH 나노로드를 이용한 선명한 황색 안료 합성 연구)

  • Yun, JiYeon;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In this work, we synthesize brilliant yellow color ${\alpha}$-FeOOH by controlling the rod length and core-shell structure. The characteristics of ${\alpha}$-FeOOH nanorods are controlled by the reaction conditions. In particular, the length of the ${\alpha}$-FeOOH rods depends on the concentration of the raw materials, such as the alkali solution. The length of the nanorods is adjusted from 68 nm to 1435 nm. Their yellowness gradually increases, with the highest $b^*$ value of 57 based on the International Commission on Illumination (CIE) Lab system, by controlling the nanorod length. A high quality yellow color is obtained after formation of a silica coating on the ${\alpha}$-FeOOH structure. The morphology and the coloration of the nal products are investigated in detail by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and the CIE Lab color parameter measurements.

Fabrication of Nanostructured Fe-Co powders by Mechanical Alloying and Their Magnetic Properties (기계적 합금화에 의한 나노구조 Fe-Co 합금분말의 제조 및 자성특성)

  • 정진영
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • A study was made on the fabrication of nanostructured Fe-Co powders by mechanical alloying and their magnetic properties. Microstrural development during the process of MA was inverstigated by means of X-ray diffraction, differential thermal analyzer, scanning electron microscopy and transmission electron microscopy. The magnetic properties of NS Fe-Co powders were evaluated through the measurements of the saturation magnetization $(M_s)$ as well as the coercivity $(H_c)$. The average grain size calculated from line braodening in XRD peak was about 10nm or less and confirmed by TEM. In this experiment, two different milling methods (cycle opertion and conventional milling) were used. Cycle operation had an advantage over the conventional milling method in that more refined powders can be obtained. Solid state alloying of the components was confirmed from both the change of the saturation magnetization and the change of lattice parameter with Co contentration. Maxium $M_s$ was obtained at the composition of 30at.%Co. Relatively high coercivities of 10~150e were obtained for the compositions investigated, and this seems to be due to the high amount of internal strain introduced during milling.

Electropolymerization of Pyrrole Applied to Biosystem

  • Lee, Chi-Woo;Yoon, Jung-Hyun;Cho, Hyun-Woo;Bae, Sang-Eun;Lee, Kang-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • We have been investigating electropolymerization of pyrrole in aqueous electrolyte solutions in acidic as well as in neutral conditions by in situ electrochemical quartz crystal oscillator method, where resonant frequency and resonant resistance can be monitored simultaneously with current-voltage measurements during electropolymerization of pyrrole. The properties of thin PPy films prepared on electrode surfaces depended strongly on the experimental variables of electrode potentials applied, solution pH, kinds and quantity of supporting electrolytes, added chemicals, and the mode of electrochemical method employed. We are applying our experience gained on electropolymerization of pyrrole to immobilizing biomolecules onto electrode surfaces to develop a biosensor system. In this work, we wish to present the results on electrochemical monitoring on electropolymerization of pyrrole in the presence of DNA and albumin in different electrochemical conditions. Additionally we will summarize our investigations on the miniaturization of biomolecules/PPy composites by means of scanning tunneling microscopy.