DOI QR코드

DOI QR Code

Realization of 1D-2DEG Composite Nanowire FET by Selective Area Molecular Beam Epitaxy

선택적 분자선 에픽택시 방법에 의한 1D-2DEG 혼성 나노선 FET의 구현

  • 김윤주 (고려대학교 전자컴퓨터공학과, 전자부품연구원 나노광전연구센터) ;
  • 김동호 (고려대학교 전자컴퓨터공학과) ;
  • 김은홍 (고려대학교 전자컴퓨터공학과) ;
  • 서유정 (고려대학교 전자컴퓨터공학과) ;
  • 노정현 (전자부품연구원 나노광전연구센터) ;
  • 한철구 (전자부품연구원 나노광전연구센터) ;
  • ;
  • 김태근 (고려대학교 전자컴퓨터공학과)
  • Published : 2006.11.01

Abstract

High quality three-dimensional (3D) heterostructures were constructed by selective area (SA) molecular beam epitaxy (MBE) using a specially patterned GaAs (001) substrate to improve the efficiency of tarrier transport. MBE growth parameters such as substrate temperature, V/III ratio, growth ratio, group V sources (As2, As4) were varied to calibrate the selective area growth conditions and the 3D GaAs-AlGaAs heterostructures were fabricated into the ridge type and the V-groove type. Scanning micro-photoluminescence $({\mu}-PL)$ measurements and the following analysis revealed that the gradually (adiabatically) coupled 1D-2DEG (electron gas) field effect transistor (FET) system was successfully realized. These 3D-heterostructures are expected to be useful for the realization of high-performance mesoscopic electronic devices and circuits since it makes it possible to form direct ohmic contact onto the (quasi) 1D electron channel.

Keywords

References

  1. C. Jiang, T. Muranaka, and H. Hasegawa, 'Improvement of growth process to achieve high geometrical uniformity in InGaAs ridge quantum wires grown by selective MBE on patterned InP substrate', Jpn. J. Appl. Phys., Vol. 40, p. 3003, 2001
  2. K. Y. Jang, T. Sugaya, C.-K. Hahn, M. Ogura, and K. Komori, 'Negative differential resistance effects of trench-type InGaAs quantum-wire field-effect transistors with 50-nm gate-length', Appl. Phys. Lett., Vol. 83, p. 701, 2003 https://doi.org/10.1063/1.1595150
  3. A. Cresti, R. Farchioni, G. Grosso, and G. Pastori Parravicini, 'Keldysh-green function formalism for currents profiles in meso scopic systems', Phys. Rev. B, Vol. 68, p. 075306, 2003 https://doi.org/10.1103/PhysRevB.68.075306
  4. A. Cresti, R. Farchioni, G. Grosso, and G. Pastori Par-ravicini, 'Quantum transport in mesoscopic systems', Journal of Applied Physics, Vol. 94, p. 1744, 2003 https://doi.org/10.1063/1.1588352
  5. A. Cresti, R. Farchioni, G. Grosso, and G. Pastori Parravicini , 'Current distribution and conductance quantization in the integer quantum hall regime', J. Phys.: Condens. Matter., Vol. 15, p. L377, 2003 https://doi.org/10.1088/0953-8984/15/24/104
  6. A. Cresti, G. Grosso, and G. Pastori Parravicini, 'Chiral symetry of microscopic currents in the quantum Hall effect', Phys. Rev. B, Vol. 69, p. 233313, 2004 https://doi.org/10.1103/PhysRevB.69.233313
  7. A. Cresti, G. Grosso, and G. Pastori Parravicini, 'Quantum transport in mesoscopic systems', Proceedings of the 4-th IEEE Conference on Nanotechnology, Monaco, p. 44, 2004
  8. C. K. Hahn, T. Sugaya, K. Y. Jang, X.-L. Wang, and M. Ogura, 'Electron transport properties in a GaAs/AlGaAs quantum wire grown on V -grooved GaAs substrate by metalorganic vapor phase epitaxy', Jpn. J. Appl. Phys., Vol. 42, p. 2399, 2003 https://doi.org/10.1143/JJAP.42.2399
  9. C. Jiang, T. Muranaka, and H. Hasegawa, 'Improvement of growth process to achieve high geometrical uniformity in InGaAs ridge quantum wires grown by selective MBE on patterned InP substrate', Jpn. J. Appl. Phys., Vol. 40, p. 3003, 2001
  10. K. Y. lang, T. Sugaya, C. K. Hahn, M. Ogura, and K. Komori, 'Negative differential resistance effects of trench-type InGaAs quantum-wire field-effect transistors with 50-nm gate-length', Appl. Phys. Lett., Vol. 83, p. 701, 2003 https://doi.org/10.1063/1.1595150
  11. J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, 'Conductance oscillations periodic in the density of a one-dimensional electron gas', Phys. Rev. Lett., Vol. 62, p. 583, 1989 https://doi.org/10.1103/PhysRevLett.62.583
  12. R. A. Smith and H. Ahmed, 'Gate controlled coulomb blockade effects in the conduction of a silicon quantum wire', J. Appl. Phys., Vol. 81, p. 2699, 1997
  13. A. Tilke, R. H. Blick, H. Lorenz, and J. P. Kotthaus, 'Coulomb blockade in quasimetallic silicon - on - insulator nanowires', Appl. Phys. Lett., Vol. 75, p. 3704, 1999 https://doi.org/10.1063/1.125435
  14. L. P. Rokhinson, L. J. Guo, S. Y. Chou, and D. C. Tsui, 'Double-dot charge transport in Si single-electron/hole transistors', Appl. Phys. Lett., Vol. 76, p. 1591, 2000 https://doi.org/10.1063/1.126105
  15. B. H. Choi, Y. S. Yu, D. H. Kim, S. H. Son, K. H. Cho, S. W. Hwang, D. Ahn, and B. G. Park, 'Double-dot-like charge transport through a small size silicon single electron transistor', Physica E, Vol. 13, p. 946, 2002 https://doi.org/10.1016/S1386-9477(02)00241-2