• Title/Summary/Keyword: scanning electron spectroscopy (SEM)

Search Result 1,163, Processing Time 0.032 seconds

Removal of Reactive Orange 16 by the Ag/TiO2 Composite Produced from Micro-emulsion Method (마이크로에멀젼 방법에 의해 제조된 Ag/TiO2의 Reactive Orange 16 제거에 관한 연구)

  • Lee, SiJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.11
    • /
    • pp.5-10
    • /
    • 2019
  • For the development of long-wavelength responding photocatalyst, Ag was applied to commercial $TiO_2$ to produce $Ag/TiO_2$ photocatalyst. Moreover, micro-emulsion method was used in order to increase the efficiency of the photocatalyst by enhancing the dispersion of Ag. Physical properties of the manufactured catalyst were analyzed by scanning electron microscopy (SEM), field emission transmission electron microscopy (FE-TEM) and diffuse reflectance spectroscopy (DRS). For the catalytic performance measurement, RO 16 (Reactive Orange 16) removal was performed with 25 ppm RO 16 under UV-A (365 nm) irradiation. In addition, ball milling and dip-coating method were used to synthesize the photocatalyst for the comparison of the outcomes of using different synthesis methods. In addition, catalytic performance was improved by varying the Ag content and surfactant content. The highest catalytic performance was shown at $Ag/TiO_2$ synthesized by micro-emulsion method with 2 wt% of Ag content, and 0.5 g of the surfactant.

Removal of sulphate from landfill leachate by crystallization

  • Aygun, Ahmet;Dogan, Selim;Argun, Mehmet Emin;Ates, Havva
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • The present study explores the applicability of response surface methodology (RSM) in conjunction with central composite design (CCD) matrix to statistically optimize ettringite crystallization process for the removal of sulphate from landfill leachate. A three factor-five coded level CCD with 20 runs, was performed to estimate the best fitted model. The RSM results indicated that the fitted quadratic regression model could be appropriate to predict sulfate removal efficiency. The pH was identified as the most dominant parameter affecting sulphate removal. 61.6% of maximum sulphate removal efficiency was obtained at pH of 11.06 for a 1.87 of $Ca/SO_4$ and 0.51 of $Al/SO_4$ molar ratios. The operating cost for ettringite crystallization at optimized conditions was calculated to be 0.52 $/$m^3$. The significance of independent variables and their interactions were tested by analysis of variance. Scanning electron microscope (SEM) and SEM coupled with energy dispersive X-Ray spectroscopy results confirmed the formation of ettringite crystal and were used to describe its morphology features.

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy Studies on Processed Tooth Graft Material by Vacuum-ultrasonic Acceleration

  • Lee, Eun-Young;Kim, Eun-Suk;Kim, Kyung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.103-110
    • /
    • 2014
  • Purpose: The current gold standard for clinical jawbone formation involves autogenous bone as a graft material. In addition, demineralized dentin can be an effective graft material. Although demineralized dentin readily induces heterotopic bone formation, conventional decalcification takes three to five days, so, immediate bone grafting after extraction is impossible. This study evaluated the effect of vacuum ultrasonic power on the demineralization and processing of autogenous tooth material and documented the clinical results of rapidly processed autogenous demineralized dentin (ADD) in an alveolar defects patient. Methods: The method involves the demineralization of extracted teeth with detached soft tissues and pulp in 0.6 N HCl for 90 minutes using a heat controlled vacuum-ultrasonic accelerator. The characteristics of processed teeth were evaluated by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Bone grafting using ADD was performed for narrow ridges augmentation in the mandibular area. Results: The new processing method was completed within two hours regardless of form (powder or block). EDS and SEM uniformly demineralized autotooth biomaterial. After six months, bone remodeling was observed in augmented sites and histological examination showed that ADD particles were well united with new bone. No unusual complications were encountered. Conclusion: This study demonstrates the possibility of preparing autogenous tooth graft materials within two hours, allowing immediate one-day grafting after extraction.

Synthesis of Diamond Thin Film by RF PACVD from $\textrm{H}_2$-$\textrm{CH}_4$ Mixed Gas (고주파 플라즈마 CVD에 의한 $\textrm{H}_2$-$\textrm{CH}_4$ 계로부터 다이아몬드 박막의 합성)

  • 임헌찬
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.13-18
    • /
    • 1999
  • Diamond film was deposited on Si wafer using $\textrm{H}_2$ and $\textrm{CH}_4$ mixed gas by RF PACVD. Prior to deposition, mechanical scratching was done to improve density of nucleation sites with diamond paste of $1\mu\textrm{m}$ The microstructure of deposited film was studied at various methane concentrations. The deposited film was characterized by XRD(X-tay diffraction), SEM(Scanning Electron Microscopy) and Raman Spectroscopy The deposited diamond film showed that the crystallite was increased at the lower methane concentration.

  • PDF

Study on Improvement of Diamond Deposition on Al2O3 Ceramic Substrates by a DC Arc Plasmatron

  • Kang, In-Je;Joa, Sang-Beom;Chun, Se-Min;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.457-457
    • /
    • 2012
  • We presented plasma processing using a DC Arc Plasmatron for diamond deposition on Al2O3 ceramic substrates. Plasma surface treatments were conducted to improve deposition condition before processing for diamond deposition. The Al2O3 ceramic substrates deposited, $5{\times}15mm^2$, were investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD). Properties of diamond (111), (220) and (311) peaks were shown in XRD. We identified nanocrystalline diamond films on substrates. The results showed that deposition rate was approximately $2.2{\mu}m/h$ after plasma surface treatments. Comparing the above result with a common processing, deposition rate was improved. Also, the surface condition was improved more than a common processing for diamond deposition on Al2O3 ceramic substrates.

  • PDF

Damage Profile of HDPE Polymer using Laser-Induced Plasma

  • Tawfik, Walid;Farooq, W. Aslam;Alahmed, Z.A.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.50-54
    • /
    • 2014
  • In this paper we studied the laser-induced crater depth, mass, and emission spectra of laser-ablated high-density polyethylene (HDPE) polymer using the laser-induced plasma spectroscopy (LIPS) technique. This study was performed using a Nd:YAG laser with 100 mJ energy and 7 ns pulse width, focused normal to the surface of the sample. The nanoscale change in ablated depth versus number of laser pulses was studied. By using scanning electron microscope (SEM) images, the crater depth and ablated mass were estimated. The LIPS spectral intensities were observed for major and minor elements with depth. The comparison between the LIPS results and SEM images showed that LIPS could be used to estimate the crater depth, which is of interest for some applications such as thin-film lithography measurements and online measurements of thickness in film deposition techniques.

Ultrathin Polymer Networks of Itaconic Acid Copolymers and Poly(allkylamine) by the ;angmuir-Blodgett Technique

  • 최기선;이범종;장상목;권영수
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.493-498
    • /
    • 1995
  • Ultrathin networks of itaconic acid copolymers and poly(allylamine) were produced by a Langmuir-Blodgett (LB) technique employing a double-chain amine as a monolayer template which was subsequently removed by extraction after thermal crosslinking. Itaconic acid copolymers used were copoly (itaconic acid-ethyl vinyl ether) and copoly (itaconic acid-n-butyl vinyl ether). The polyion-complexed monolayers of three components consisting of template amine, itaconic acid copolymer and poly (allylamine) were formed at the air-water interface. The Langmuir film properties have been studied by the surface pressure-area isotherm and fluorescence microscopy. The monolayers were transferred on solid substrates and were characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). Two-dimensional polymer networks were formed through imide or amide linkages by heat treatment under vacuum. The heat-treated films were extracted with chloroform after immersion in aq. sodium chloride to remove the template amines. SEM observation of a LB film on a porous fluorocarbon membrane filter with pore diameter of 0.1 μm showed covering of the pores by six layers in the polyion complex state.

Non-vacuum processing of CIGS absorber layer using nanoparticle

  • Ham, Chang-Woo;Song, Ki-Bong;Suh, Jeong-Dae;Cho, Jung-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.267-267
    • /
    • 2009
  • Solar cells with CIGS absorber layers have proven their suitability for high efficiency and stable low cost solar cells. We prepared and characterized particle based CIGS thin film using a non-vacuum processing. CIGS powder were obtained at $240^{\circ}C$ for 6 hours from the reaction of $CuCl_2$, $InCl_3$, $GaCl_3$, Se powder in solvent. The nanoparticle precursors were mixed with binder material. The CIGS thin film deposited on a sodalime glass. The CIGS thin film were identified to have a typical chalcopyrite tetragonal structure by using UV/Visible-spectroscopy, X-ray diffraction(XRD), Auger Electron Spectroscopy(AES), Scanning Electron Microscopy(SEM).

  • PDF

Preparation and Characteristics of Particle based CIGS Thin Films for Solar Cell (태양전지용 입자기반 CIGS 박막의 제조 및 특성분석)

  • Ham, Chang-Woo;Song, Ki-Bong;Suh, Jeong-Dae;Ahn, Se-Jin;Yoon, Jae-Ho;Yoon, Kyung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.442-443
    • /
    • 2009
  • We prepared and characterized particle based CIGS thin film using a thermal evaporator. CIGS powder were obtained at $240^{\circ}C$ for 6 hours from the reaction of $CuCl_2$, $InCl_3$, $GaCl_3$, Se powder in solvent. The CIGS thin film deposited on a sodalime glass. The CIGS thin film were identified to have a typical chalcopyrite tetragonal structure by using UV/Vis-spectroscopy, X-ray diffraction(XRD), Auger Electron Spectroscopy(AES), Scanning Electron Microscopy(SEM).

  • PDF