• Title/Summary/Keyword: scaled tank

Search Result 60, Processing Time 0.021 seconds

Experimental Study on Sloshing Loads in a B-Type Independent Tank (독립형 화물창 내부의 슬로싱 하중에 대한 실험적 연구)

  • Kim, Sang-Yeob;Ahn, Yangjun;Kim, Yonghwan;Heo, Joo-Ho;Jeong, Taeseok;Lee, Chul-Ho;Kim, Do-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.390-398
    • /
    • 2013
  • In this paper, an experimental study on sloshing problems in an independent B-type tank of STX Offshore and Shipbuilding Co. is described. Recently STX Offshore and Shipbuilding Co. introduced a new design of an independent B-type tank in order to reduce sloshing impact loads on LNG CCS. This tank has many internal members, so that sloshing flow and the resultant hydrodynamic loads are very different from those in typical membrane tanks. In this study, a series of sloshing experiment have been carried out for 1/50 scale model, and the main characteristics of sloshing load on the independent tank are observed. The properly scaled internal members such as swash bulkhead, center bulkhead and stringers have been installed in the test tank model, but sloshing pressures are measured on the tank walls only. The forced excitation signals have been generated by using the predicted ship motion in irregular sea states. The characteristics of sloshing loads on this tank have been observed in different filling levels with various heading angles, and sea states. In this paper, some key findings from the model tests are discussed.

Design of the 1/8 Scaled HU-KINS Based on the Scaling Laws for the Experimental Investigation of Thermal-Hydraulic Effect of CANDU-6 Moderator (CANDU-6 원자로 감속재 열수력 개별영향실험을 위한 축소화 기법에 따른 1/8 축소형 HU-KINS 설계)

  • Lee, Jae-Young;Kim, Man-Woong;Kim, Nam-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.825-833
    • /
    • 2006
  • To investigate the moderator coolability for CANDU-6 reactors, a test facility (HU-KINS) has been manufactured as a 1/8 scaled-down of a calandria tank. In the design of the test facility, a scaling law was developed in such a way to consider the thermal-hydraulic characteristics of a CANDU-6 moderator. The proposed scaling law takes into consideration of the energy conservation, the dynamic similitude such as dimensionless numbers, Archimedes number (Ar) and Reynolds number (Re), and thermal-hydraulic properties similitude. Using this proposed scaling law, the thermal-hydraulic scaling analyses of similar test facilities such as the SPEL (1/10 scale) and the STERN (1/4 scale), have been identified. As a result, in the case of the SPEL, while the energy conservation is well defined, the similarities of Ar and the heat density are not well considered. As for the similarity of the STERN, while both the energy conservation and the characteristics of Ar are well defined, the heat density is not. In the meanwhile, the HU-KINS test facility with 1/8 length scaled-down is well similitude in compliance with all similarities of the energy conservation, the fluid dynamics and thermal-hydraulic properties. To verify the adequacy of the similarities in terms of thermal-hydraulics, a computational fluid dynamic (CFD) analysis has been conducted using the CFX-5 code. As the results of the CFD analyses, the predicted flow patterns and variation of axial properties inside the calandria tank are well consistant with those of previous studies performed with FLUENT and this implies that the present scaling method is acceptable.

Odor Removal by Using Compost and Granular Scrap Tires (퇴비 및 폐타이어 Granule을 이용한 악취 제거)

  • Chung, Yoon-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • In spite of low energy requirement, and operation and construction cost, biofilters with soil beds have not been operated efficiently. Because of excess moisture in winter and rainy periods, saturated pores in the bed prevent passage and sorption of odorous compounds. Sometimes this results in septic conditions that release previously sorbed and oxidized sulfur. Therefore, an economical and effective alternative needs to be developed. The objectives of this study were to confirm applicability of the granular scrap tires with compost for treating odorous gas as well as to obtain optimum design parameters for proposed system. In lab-scaled test, multiple stage reactors had lower headloss than a single stage reactor and less headloss was occurred for the gas with higher moisture content. For practical purpose, pilot-scaled reactor was operated to remove odor from septic tank, manure and animal wastewater treatment plant and composting machine. According to the results of pilot scaled test, $H_2S$ can be always removed completely and ammonia/amine can be removed excellently when proper moisture content is provided. The results from lab and pilot test showed that granular scrap tire could be replaced with soil as supporting material for biofilter showed excellent drainage because of its ability to reject moisture.

  • PDF

Computational Modal Analyses for the Propellant Tank and Small-Scaled First-Stage Models of Liquid-Propulsion Launch Vehicles (우주 발사체 추진제 탱크 및 축소 1단 모델의 전산 모드 해석 연구)

  • Sim, Chang-Hoon;Kim, Geun-Sang;Kim, Dong-Goen;Kim, In-Gul;Park, Soon-Hong;Park, Jae-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.18-25
    • /
    • 2018
  • This research aims to establish the finite-element modeling techniques for computational modal analyses of liquid propellants and flange joints of launch-vehicle structures. MSC.NASTRAN is used for the present computational modal analyses of the liquid-propellant tank and the small-scaled first-stage model. By means of the correlation between the measured and computed natural frequencies, the finite modeling techniques for liquid propellants and flange joints of launch-vehicle structures are established appropriately. This modal analysis using the virtual-mass method predicts well the bell mode of the liquid-propellant tank containing liquid. In addition, the present computation using RBE2 elements for modeling of flange joints predicts the first and second bending-mode frequencies within a relative error of 10%, which is better than the measured frequencies obtained from the modal test, for the small-scaled first-stage model containing liquid.

An experimental research for Potential Interference of a Mesh electrode in Intelligent Building System (지능형빌딩의 대단위접지극의 전위간섭에 대한 실증연구)

  • Koh, Hee-Seog;Kim, Ju-Chan;Choi, Jong-Gyu;Kim, Maeng-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.414-416
    • /
    • 2005
  • This is for investigating the grounding resistance of grounding electrodes, the experiment was performed with model-scale of the grounding system and the scaled model grounding system was to this experiment using a water tank of a stainless steel-hemisphere shape. since mesh electrodes have been widely in the general building, we're tried to analyze that this water tank model and it's simulation as well.

  • PDF

An experimental research about the grounding resistance of the mesh electrode in the model of water tank (메쉬접지극의 접지저항에 관한 실증연구)

  • Kim, Ju-Chan;Choi, Jong-Gyu;Lee, Chung-Sik;Koh, Hee-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.349-354
    • /
    • 2005
  • Recently, there are many equipment of electricity, electronics, and communication which need to grounding in the building. When the electric current flows into a certain grounding system in the same building, the potential rise of other grounding system is possible to be affected by its potential rise. This potential interference was affected by the surface potential, it is deeply related whit the electrode shape. In this paper, basic formula is deduced on the basis of both electrodes surface potential of grounding electrode in a source of the potential interference and groundidng electrode which receive the potential interference. Therefore the degree of potential interference as multiple groundidng electrode can be verified the simulated results by means of the simple model in advance. This is for investigating the grounding resistance of grounding electrodes, the experiment was performed with model-scale of the grounding system and the scaled model grounding system was to this experiment using a water tank of a stainless steel-hemisphere shape. since mesh electrodes have been widely in the general building, we're tried to analyze that this water tank model and it's simulation as well.

  • PDF

Study on Scaling Analysis and Design Methodology of Passive Injection Test Facility (피동 주입 시험 장치의 척도 해석 및 설계 방법론 연구)

  • Bae, Hwang;Lee, Minkyu;Ryu, Sung-Uk;Shin, Soo Jai;Kim, Young-In;Yi, Sung-Jae;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.50-60
    • /
    • 2016
  • A design methodology of the modeled test facility to conserve an injection performance of a passive safety injection system is proposed. This safety injection system is composed of a core makeup tank and a safety injection tank. Individual tanks are connected with pressure balance line on the top side and injection line on the bottom side. It is important to conserve the scaled initial injection flow rate and total injection time since this system can be operated by small gravity head without any active pumps. Differential pressure distribution of the injection line induced by the gravity head is determined by the vertical length and elevation of each tank. However, the total injection time is adjustable by the flow resistance coefficient of the injection line. The scaling methodology for the tank and flow resistance coefficient is suggested. A key point of this test facility design is a scaling analysis for the flow resistance coefficient. The scaling analysis proposed on this paper is based on the volume scaling law with the same vertical length to the prototype and can be extended to a model with a reduced vertical length. A set of passive injection test were performed for the tanks with the same volume and the different length. The test results on the initial flow rate and total injection time showed the almost same injection characteristics and they were in good agreement with the design values.

A Study on Safety Blasting Design with Blast Vibration Analysis Urban Area (도심지 미진동 제어 발파에서 진동분석을 통한 안전발파설계에 관한 연구)

  • 안명석;박종남;배상근
    • Explosives and Blasting
    • /
    • v.17 no.2
    • /
    • pp.36-44
    • /
    • 1999
  • A study was made on the design of the prediction model concerning blasting vibration in a constraction site, Namgu, Daegu City. The geology in this area consists of hornfels of shale and mud underlain by quartize, of which the main strike of the geological structure is NW direction. Measurements were carried out on the top of the wall concrete water storage tank, which is burried in the ground earth. The attenuation due to the vertical wall of the concrete structure may be experted because of spherical divergency at the bottom corner of the wall by the Huygens principle. For design of blasting prediction model, thus among scaled distance(SD) may be preferable to use in the regression model, since they represents most likely the average ground condition. Judging from the regression results, the cube root method may be more suitable for this area. The SD values for the maximum allowable vibration velocity of 0.5 cm/s, in this area are 22.5, 28.0 and 30.6 for the significance level of 50%, 95% and 99%, respectively.

  • PDF

Post-Correlation Analysis for Shake Table Test of Square Liquid Storage Tank (정사각형 수조 진동대실험에 대한 상관해석)

  • Son, Il-Min;Kim, Jae-Min;Choi, Hyung-Suk;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a post-correlation analysis for shaking table test of square water storage tank is presented for the use of advances in earthquake-resistant design of liquid storage tank. For this purpose, the ANSYS CFX program is selected for the CFD analysis. Sensitivity analysis for resonant sloshing motion in terms of grid size and turbulence model suggested that (1) horizontal grid size as well as vertical grid size is a key variable in the sloshing analysis, and (2) the SST turbulence model is best for the sloshing analysis. Finally, correlation analyses for a non-resonant harmonic input and scaled earthquake excitation of the El Centro (1940) NS component are carried out using the grid and turbulence model established through the post-correlation analysis for the resonant motion. As a result, sloshing time histories by the CFD analysis agreed very well with the test results.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.