• Title/Summary/Keyword: scale removal

Search Result 1,214, Processing Time 0.036 seconds

Removal of iron scale from feed-water in thermal power plant by magnetic separation - Introduction to chemical cleaning line -

  • Yamamoto, Junya;Mori, Tatsuya;Hiramatsu, Mami;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijim, Sigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.6-10
    • /
    • 2018
  • Removal of iron oxide scale from feed-water in thermal power plant can improve power generation efficiency. We have proposed a novel scale removal system utilizing High Gradient Magnetic Separation (HGMS). This system can be applied to high temperature and pressure area. We have conducted the lab-scale model experiments using ${\varphi}50mm$ filters and it demonstrated high removal efficiency in HGMS, but scale-up of the system is required toward practical use. In this study, we conducted a large scale mock-up HGMS experiment. We used the superconducting solenoidal magnet with ${\varphi}400mm$ bore and demonstrated that our HGMS system can achieve sufficient scale removal capacity that is required to introduce into both off-line and on-line system.

A Statistical Study of CMP Process in Various Scales (CMP 프로세스의 통계적인 다규모 모델링 연구)

  • 석종원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2110-2117
    • /
    • 2003
  • A physics-based material removal model in various scales is described and a feature scale simulation for a chemical mechanical polishing (CMP) process is performed in this work. Three different scales are considered in this model, i.e., abrasive particle scale, asperity scale and wafer scale. The abrasive particle and the asperity scales are combined together and then homogenized to result in force balance conditions to be satisfied in the wafer scale using an extended Greenwood-Williamson and Whitehouse-Archard statistical model that takes into consideration the joint distribution of asperity heights and asperity tip radii. The final computation is made to evaluate the material removal rate in wafer scale and a computer simulation is performed for detailed surface profile variations on a representative feature. The results show the dependence of the material removal rate on the joint distribution, applied external pressure, relative velocity, and other operating conditions and design parameters.

A study on the Chlorine removal characteristics of Plastics in a Lab-scale Pyrolysis reactor (실험실 규모 열분해로에서의 플라스틱 탈염 특성 연구)

  • Park, Ju-Won;Park, Sang-Shin;Yang, Won;Yu, Tae-U
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.155-160
    • /
    • 2007
  • This study was conducted to find out the chlorine removal characteristics of waste plastic mixture by pyrolysis process with thermogravimetric analysis(TGA) and a lab-scale pyrolyzer. The material used as plastic wastes were PE (Poly-ethylene), PP (Poly-prophylene), and PVC (Poly Vinyl Chloride). Experimental procedure were composed of three steps; 1st step: TGA of PVC, PP and PE, 2nd step: chlorine removal rate of PVC in a lab-scale pyrolyzer, 3rd step: chlorine removal rate of PVC-PE and PVC-PP mixture in a pyrolyzer. Through the results of TGA, we can estimate the basic pyrolysis characteristics of each plastic, and then we can also derive the design parameters and operating conditions of the lab-scale pyrolyzer. The results can be used as primary data for designing a system to produce RPF (Refuse Plastic Fuel), a waste incinerator and a pyrolysis/gasification process.

  • PDF

A Study on Removal of Organics, Nitrogen and Phoschorus of Domestic Wastewater in Pilot-Scale Upflow Packed Bed Column Reactor (Pilot 규모의 상향류식 충전탑 반응기를 이용한 생활오수의 유기물 및 질소, 인 처리에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.191-196
    • /
    • 2007
  • This study used biofilm process, which needs simple operation, maintenance and smaller facility area than conventional activated sludge process with the small plant operation, in the treatment of increasing sewage with the rapid industrial growth. The reactor used in this study consists of one anaerobic and one aerobic chamber filled with waste ceramic and waste vinyl as media and the treated sewage was from restaurant source. The experiment was scaled up from lab. to pilot scale and lasted for about 100 days. We focused on the removal efficiency of organics, nitrogen and phosphorus with constant HRT and continuous aeration. The removal efficiency of $BOD_5$ and SS were 94.33% and 87.77% respectively, which was a satisfaction level. However the removal efficiency of $COD_{Cr}$ was 81.46% somewhat below the desired level of 90%, and that of T-N and T-P showed 71.92% and 21.10% respectively, that was below the expected value. The removal efficiency of $COD_{Cr}$ and T-N in the pilot scale was about 10% low compared with the lab.-scale.

Performances of Intermittently Aerated and Dynamic Flow Activated Sludge Process (2단간헐폭기 및 유로변경 간헐폭기 활성슬러지 시스템을 이용한 도시하수 처리)

  • 원성연;민경국;이상일
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • Removal of nitrogen and phosphate in wastewater is concerned to important for the prevention of eutrophication in receiving water and lake. Conventional activated sludge system designed for organics removal can be retrofitted only by modification of aeration basin to maintain anaerobic and aerobic state. Biological nutrient removal processes(BNR) such as Bardenpho, A$^{2}$/O, UCT, VIP were generally used for the treatment of wastewater. However these BNR processes used in large scale WWTP were not suitable in small scale WWTP(i.e., package type WWTP) due to relatively large fluctuation of flow rate and concentration of pollutants. The purpose of this research was to develop the compact, effective and economical package type WWTP for the removals of carbon and nitrogen in small scale wastewater. Intermittently aerated activated sludge system (IADFAS) were investigated for removal of nitrogen in both domestic wastewater, Bardenpho process was also evaluated. Nitrogen removal of IAAS, IADFAS, Bardenpho were 75, 77 and 67%, respectively.

  • PDF

Study on Within-Wafer Non-uniformity Using Finite Element Method (CMP 공정에서의 웨이퍼 연마 불균일성에 대한 유한요소해석 연구)

  • Yang, Woo Yul;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.272-277
    • /
    • 2012
  • Finite element analysis was carried out using wafer-scale and particle-scale models to understand the mechanism of the fast removal rate(edge effect) at wafer edges in the chemical-mechanical polishing process. This is the first to report that a particle-scale model can explain the edge effect well in terms of stress distribution and magnitude. The results also revealed that the mechanism could not be fully understood by using the wafer-scale model, which has been used in many previous studies. The wafer-scale model neither gives the stress magnitude that is sufficient to remove material nor indicates the coincidence between the stress distribution and the removal rate along a wafer surface.

Application of Electrocoagulation for Printing Wastewater Treatment: From Laboratory to Pilot Scale

  • Thuy, Nguyen Thi;Hoan, Nguyen Xuan;Thanh, Dang Van;Khoa, Pham Minh;Tai, Nguyen Thanh;Hoang, Quang Huy;Huy, Nguyen Nhat
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • This study reports for the first time the application of electrocoagulation (EC) from laboratory to pilot scales for the treatment of printing wastewater, a hazardous waste whose treatment and disposal are strictly regulated. The wastewater was taken from three real printing companies with strongly varying characteristics. The treatment process was performed in the laboratory for operational optimization and then applied in the pilot scale. The weight loss of the electrode and the generation of sludge at both scales were compared. The results show that the raw wastewater should be diluted before EC treatment if its COD is higher than about 10,000 mg/L. Pilot scale removal efficiencies of COD and color were slightly lower compared to those obtained from the laboratory scale. At pilot scale, the effluent CODs removal efficiency was 81.9 - 88.9% (final concentration of 448 - 992 mg/L) and color removal efficiency was 95.8 - 98.6% (final level of 89 - 202 Pt-Co) which proved the feasibility of EC treatment as an effective pre-treatment method for printing wastewater as well as other high colored and hard-biodegradable wastewaters.

Evaluation of Removal Efficiencies of Heavy Metals Using Brown Seaweed Biosorbent Under Different Biosorption Systems (폐미역을 이용한 생물흡착 시스템별 중금속 제거 효율 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kim, Sung-Un;Kang, Se-Won;Lee, Jun-Bae;Lim, Byung-Jin;Kang, Seok-Jin;Jeon, Weon-Tai;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.310-315
    • /
    • 2011
  • BACKGROUND: Heavy-metal pollution represents an important environmental problem due to the toxic effects of metals, and their accumulation throughout the food chain leads to serious ecological and health problems. METHODS AND RESULTS: Optimum conditions in continuous-flow stirred tank reactor (CSTR) and packedbed column contactor (PBCC) using brown seaweed biosorbent were investigated. Under optimum conditions from both lab-scale biosorbent systems, removal efficiency of copper (Cu) in a large-scale PBCC system was investigated. Removal capacity of Cu using brown seaweed biosorbent in a lab-scale CSTR system was higher than that in a lab-scale PBCC system. On the other hand, over 48 L/day of flow rate in Cu solution, removal efficiency of Cu in a lab-scale PBCC system was higher than that in a lab-scale CSTR system. Optimum flow rate of Cu was 24 L/day, optimum Cu solution concentration was 100 mg/L. Removal capacity of Cu at different stages was higher in the order of double column biosorption system > single column biosorption system. Under different heavy metals, removal capacities of heavy metal were higher in the order of Pb > Cr > Ni > Mn ${\geq}$ Cu ${\geq}$ Cd ${\fallingdotseq}$ Zn ${\geq}$ Co. Removal capacity of Cu was 138 L in a large-scale PBCC system. Removal capacity of Cu a large-scale PBCC system was similar with in a lab-scale PBCC system. CONCLUSION(s): Therefore, PBCC system using brown seaweed biosorbent was suitable for treating heavy metal wastewater.

A Pilot-Scale Study of Multiple Stage of Constructed Wetland Treatment System and Modeling for Nutrient Removal (Pilot 규모 연속배열형 인공습지의 영양염류 제거효능 규명 및 평가모델 연구)

  • Choi, Seung Il;Iamchaturapatr, Janjit;Rhee, Jae Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.781-788
    • /
    • 2010
  • A pilot study was performed to examine the feasibility of multiple stage of constructed wetland (CW) for nutrient removal. The system is composed of six wetland cells connected with water-ways. The hydraulic of wetland cells is designed as free water surface flow. The treatment capacity was $25m^3d^{-1}$ at HRT of about one day for each cell. The magnitude of nutrient removal was related with the length of wetlands and plant density. Total N and P removal rates were 1353 and $246mg\;m^{-2}d^{-1}$ respectively. The pilot-scale reactor was model as continuous flow system containing contribution of CSTR and PFR typed-reactors. The $k-C^*$ model equation was applied to predict N and P reduction. The result indicated the equation was well guided to estimate reduction of $NO_3-N$ and $PO_4-P$.

Biological Phosphorus Removal using the Sequencing Batch Reactor Process (연속회분식반응조를 이용한 생물학적인 인 제거 연구)

  • Yang, Hyung-Jae;Shin, Eung-Bai;Chung, Yun-Chul;Choi, Hun-Geun
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.533-539
    • /
    • 2000
  • A bench-scale reactor using SBR process was experimented with an synthetic wastewater. The main purpose of this investigation was to evaluate applicability in the field and process removal efficiencies in terms of BOD and T-P and its corresponding kinetic parameters. Removal rate of phosphorus was 77% in terms of total phosphorus. Effluent concentrations were $9.8mg/{\ell}$ BOD and $1.1mg/{\ell}$ T-P. Effluent quality was maintained consistently stable by controlling decant volume and operating cycles. The efficiency for phosphorus removal was increased due to decrease in BOD-SS loading value in the range of $0.25{\leq}$aeration time ratio${\leq}0.52$.

  • PDF