DOI QR코드

DOI QR Code

Application of Electrocoagulation for Printing Wastewater Treatment: From Laboratory to Pilot Scale

  • Received : 2019.07.16
  • Accepted : 2020.07.28
  • Published : 2021.02.28

Abstract

This study reports for the first time the application of electrocoagulation (EC) from laboratory to pilot scales for the treatment of printing wastewater, a hazardous waste whose treatment and disposal are strictly regulated. The wastewater was taken from three real printing companies with strongly varying characteristics. The treatment process was performed in the laboratory for operational optimization and then applied in the pilot scale. The weight loss of the electrode and the generation of sludge at both scales were compared. The results show that the raw wastewater should be diluted before EC treatment if its COD is higher than about 10,000 mg/L. Pilot scale removal efficiencies of COD and color were slightly lower compared to those obtained from the laboratory scale. At pilot scale, the effluent CODs removal efficiency was 81.9 - 88.9% (final concentration of 448 - 992 mg/L) and color removal efficiency was 95.8 - 98.6% (final level of 89 - 202 Pt-Co) which proved the feasibility of EC treatment as an effective pre-treatment method for printing wastewater as well as other high colored and hard-biodegradable wastewaters.

Keywords

References

  1. L. Ding, Y. Chen and J. Fan, Journal of Environmental Chemistry and Ecotoxicology, 2011, 3(10), 272-276.
  2. C.-H. Tung, S.-Y. Shen, J.-H. Chang, Y.-M. Hsu and Y.-C. Lai, Sep. Purif. Technol., 2013, 117, 131-136. https://doi.org/10.1016/j.seppur.2013.07.028
  3. Z. Liu, Y. Chen, S. Hu, J. Qiu, Y. Meng and L. Li, Chemical Engineering Transactions, 2016, 55, 85-90.
  4. V. Kuokkanen, T. Kuokkanen, J. Ramo and U. Lassi, Green and Sustainable Chemistry, 2013, 3(2), 89-121. https://doi.org/10.4236/gsc.2013.32013
  5. O. Sahu, B. Mazumdar and P. K. Chaudhari, Environmental Science and Pollution Research, 2014, 21(4), 2397-2413. https://doi.org/10.1007/s11356-013-2208-6
  6. A. Akyol, Desalination, 2012, 285, 91-99. https://doi.org/10.1016/j.desal.2011.09.039
  7. A. Suarez-Escobar, A. Pataquiva-Mateus and A. Lopez-Vasquez, Catal. Today, 2016, 266, 120-125. https://doi.org/10.1016/j.cattod.2015.09.016
  8. S. Adamovic, M. Prica, B. Dalmacija, S. Rapajic, D. Novakovic, Z. Pavlovic and S. Maletic, Arabian Journal of Chemistry, 2016, 9(1), 152-162. https://doi.org/10.1016/j.arabjc.2015.03.018
  9. N. T. Thuy, C. T. Bao, D. X. Son, U. D. Bao, D. V. Thanh and N. N. Huy, Vietnam Journal of Science and Technology, 2017, 55(4C), 192.
  10. K. P. Papadopoulos, R. Argyriou, C. N. Economou, N. Charalampous, S. Dailianis, T. I. Tatoulis, A. G. Tekerlekopoulou and D. V. Vayenas, J. Environ. Manage., 2019, 237, 442-448. https://doi.org/10.1016/j.jenvman.2019.02.080
  11. C.-J. Lin, S.-L. Lo, C.-Y. Kuo and C.-H. Wu, J. Environ. Eng., 2005, 131(3), 491-495. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(491)
  12. D. Valero, J. M. Ortiz, V. Garcia, E. Expisito, V. Montiel and A. Aldaz, Chemosphere, 2011, 84(9), 1290-1295. https://doi.org/10.1016/j.chemosphere.2011.05.032
  13. APHA-AWWA-WEF, Standard methods for the examination of water and wastewater (21st ed), Washington, D. C, 2005.
  14. K. Bensadok, S. Benammar, F. Lapicque and G. Nezzal, Journal of Hazardous Materials, 2008, 152(1), 423-430. https://doi.org/10.1016/j.jhazmat.2007.06.121
  15. Metcalf and Eddy, Wastewater engineering : treatment and reuse, McGraw-Hill, Boston, 2003.
  16. M. Kobya, H. Hiz, E. Senturk, C. Aydiner and E. Demirbas, Desalination, 2006, 190(1-3), 201-211. https://doi.org/10.1016/j.desal.2005.10.006
  17. V. Khandegar and A. K. Saroha, J. Environ. Manage., 2013, 128, 949-963. https://doi.org/10.1016/j.jenvman.2013.06.043
  18. S. T. McBeath, M. Mohseni and D. P. Wilkinson, Environ. Technol., 2020, 41(5), 577-585. https://doi.org/10.1080/09593330.2018.1505965
  19. E. Mohora, S. Roncevic, B. Dalmacija, J. Agbaba, M. Watson, E. Karlovic and M. Dalmacija, J. Hazard. Mater., 2012, 235, 257-264. https://doi.org/10.1016/j.jhazmat.2012.07.056
  20. H. Q. H. Phan, N. X. Hoan, N. N. Huy, N. D. D. Duc, N. T. N. Anh, N. T. Que and N. T. Thuy, Journal of Environment and Sustainability, 2019, 3(3), 127-212.
  21. K. Thella, B. Verma, V. C. Srivastava and K. K. Srivastava, Journal of Environmental Science and Health, Part A, 2008, 43(5), 554-562. https://doi.org/10.1080/10934520701796630
  22. E. Fekete, B. Lengyel, T. Cserfalvi and T. Pajkossy, J. Solid State Electrochem., 2016, 20(11), 3107-3114. https://doi.org/10.1007/s10008-016-3195-6
  23. E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam and A. H. Mahvi, J Environ Health Sci Eng, 2015, 13(1), 74. https://doi.org/10.1186/s40201-015-0233-8
  24. G. Chen, Sep. Purif. Technol., 2004, 38(1), 11-41. https://doi.org/10.1016/j.seppur.2003.10.006
  25. Q. H. Nguyen, T. Watari, T. Yamaguchi, Y. Takimoto, K. Niihara, J. P. Wiff and T. Nakayama, International Journal of Electrochemical Science, 2020, 15, 39-51.
  26. B. Khaled, B. Wided, H. Bechir, E. Elimame, L. Mouna and T. Zied, Arabian Journal of Chemistry, 2019, 12(8), 1848-1859. https://doi.org/10.1016/j.arabjc.2014.12.012
  27. B. Z. Can, R. Boncukcuoglu, A. E. Yilmaz and B. A. Fil, J Environ Health Sci Eng, 2014, 12(1), 95. https://doi.org/10.1186/2052-336X-12-95
  28. S. Bayar, Y. S. Yildiz, A. E. Yilmaz and S. Irdemez, Desalination, 2011, 280(1-3), 103-107. https://doi.org/10.1016/j.desal.2011.06.061
  29. A. E. Yilmaz, R. Boncukcuoglu, M. M. Kocakerim and E. Kocadagistan, Desalination, 2008, 230(1-3), 288-297. https://doi.org/10.1016/j.desal.2007.11.031
  30. F. Akbal and S. Camci, Chemical Engineering & Technology, 2010, 33(10), 1655-1664. https://doi.org/10.1002/ceat.201000091
  31. M. Ahmadian, N. Yousefi, S. W. Van Ginkel, M. R. Zare, S. Rahimi and A. Fatehizadeh, Water Sci. Technol., 2012, 66(4), 754-760. https://doi.org/10.2166/wst.2012.232