DOI QR코드

DOI QR Code

Evaluation of Removal Efficiencies of Heavy Metals Using Brown Seaweed Biosorbent Under Different Biosorption Systems

폐미역을 이용한 생물흡착 시스템별 중금속 제거 효율 평가

  • Choi, Ik-Won (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Seo, Dong-Cheol (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Kim, Sung-Un (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Kang, Se-Won (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Lee, Jun-Bae (Yeongsan River Environmental Research Center) ;
  • Lim, Byung-Jin (Yeongsan River Environmental Research Center) ;
  • Kang, Seok-Jin (National Institute of Animal Science, Rural Development Administration) ;
  • Jeon, Weon-Tai (National Institute of Crop Science, Rural Development Administration) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Ju-Sik (Department of Bio-Environmental Sciences, Sunchon National University)
  • 최익원 (순천대학교 생물환경학과) ;
  • 서동철 (순천대학교 생물환경학과) ;
  • 김성은 (순천대학교 생물환경학과) ;
  • 강세원 (순천대학교 생물환경학과) ;
  • 이준배 (영산강 물환경연구소) ;
  • 임병진 (영산강 물환경연구소) ;
  • 강석진 (농촌진흥청 국립축산과학원) ;
  • 전원태 (농촌진흥청 국립식량과학원) ;
  • 허종수 (경상대학교 응용생명과학부) ;
  • 조주식 (순천대학교 생물환경학과)
  • Received : 2011.09.16
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

BACKGROUND: Heavy-metal pollution represents an important environmental problem due to the toxic effects of metals, and their accumulation throughout the food chain leads to serious ecological and health problems. METHODS AND RESULTS: Optimum conditions in continuous-flow stirred tank reactor (CSTR) and packedbed column contactor (PBCC) using brown seaweed biosorbent were investigated. Under optimum conditions from both lab-scale biosorbent systems, removal efficiency of copper (Cu) in a large-scale PBCC system was investigated. Removal capacity of Cu using brown seaweed biosorbent in a lab-scale CSTR system was higher than that in a lab-scale PBCC system. On the other hand, over 48 L/day of flow rate in Cu solution, removal efficiency of Cu in a lab-scale PBCC system was higher than that in a lab-scale CSTR system. Optimum flow rate of Cu was 24 L/day, optimum Cu solution concentration was 100 mg/L. Removal capacity of Cu at different stages was higher in the order of double column biosorption system > single column biosorption system. Under different heavy metals, removal capacities of heavy metal were higher in the order of Pb > Cr > Ni > Mn ${\geq}$ Cu ${\geq}$ Cd ${\fallingdotseq}$ Zn ${\geq}$ Co. Removal capacity of Cu was 138 L in a large-scale PBCC system. Removal capacity of Cu a large-scale PBCC system was similar with in a lab-scale PBCC system. CONCLUSION(s): Therefore, PBCC system using brown seaweed biosorbent was suitable for treating heavy metal wastewater.

폐미역을 이용한 생물흡착제의 중금속 제거능력을 조사하기 위해 lab-scale의 생물흡착시스템에서 최적조건을 구명하고, lab-scale의 생물흡착시스템의 최적조건하에서 large-scale PBCC 시스템의 중금속 제거능력을 조사하였다. Lab-scale 생물흡착시스템별 중금속 제거능력은 PBCC보다 CSTR이 뛰어났지만 CSTR은 폐수유입속도가 48 L/day이상에서 완전혼합상태를 유지하지 못하여 안정적인 운전이 가능한 PBCC가 적합하였다. Cu용액의 유입속도 및 농도별 Cu 제거능력은 유입속도 12 L/day 및 유입농도 10 mg/L일 때 Cu용액 처리량이 가장 뛰어났으나 경제적인 부분을 검토한 결과 유입속도 24 L/day 및 유입농도 100 mg/L가 적절할 것으로 판단되었다. 처리단계별 Cu 제거능력은 컬럼을 연속식으로 배열하는 것이 Cu 제거효율이 높았다. 중금속 종류별 제거능력은 Pb, Cr의 처리효율이 높았고 Cu용액 이외의 다른 중금속 용액들도 Cu와 동등한 수준 이상의 처리효율을 나타내었다. Lab-scale의 PBCC 시스템을 27배 규모로 scale-up한 large-scale PBCC 시스템의 Cu 제거능력은 138 L로 lab-scale의 5 L와 비교하였을 때 동등한 수준을 유지하였다. 따라서 중금속 처리를 위한 최적 폐미역 활용 생물흡착시스템은 PBCC 시스템인 것으로 판단되나, 실제 중금속 폐수에 본 최적시스템을 적용하기 위해서는 중금속 폐수 특성에 따른 적용성 연구가 추가로 진행되어야 할 것으로 판단된다.

Keywords

References

  1. Ahn, K.H., Suh, K.H., 1995. Biosorption of heavy metals by Saccharomyces uvarum, J. Korean Environ. Sci. Soc. 4, 527-534.
  2. Ahn, S.J., Kim, Y.S., Park, K.P., 2004. Storage of waste-brown seaweed and degradation of alginate using microorganism, J. Environ. Sci. 13, 313-318. https://doi.org/10.5322/JES.2004.13.3.313
  3. APHA, AWWA, WCF, 1995. Standard methods for the examination of water and wastewater, 19th ed. American Public Health Association, Washington, DC, USA.
  4. Cho, J.S., Park, I.N., Heo, J.S., Lee, Y.S., 2004. Biosorption and desorption of heavy metals using Undaria sp., Korean J. Environ. Agric. 23, 92-98. https://doi.org/10.5338/KJEA.2004.23.2.092
  5. Choi, I.W., 2004. Biosorption of heavy metals and development of biosorbent by using seaweeds. Master Science Thesis. Sunchon National University, Korea.
  6. Choi, I.W., Kim, S.U., Seo, D.C., Kang, B.H., Sohn, B.K., Rim, Y.S., Heo, J.S., Cho, J.S., 2005. Biosoroption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida, Korean J. Envirion. Agric. 24, 370-378. https://doi.org/10.5338/KJEA.2005.24.4.370
  7. Choi, K.C., Kwan, O.U., Kim, Y.D., Kim, Y.H., Lee, W.S., Lee, J.Y., jun, S.J., Jung, S.K., 2004. Annotation for standard methods of water quality. printed in Dong Hwa Technology Publishing Co. Korea.
  8. Davis, T.A., Volesky, B., Mucci, A., 2003. A review of the biochemistry of heavy metal biosorption by brown algae, Water Research 37, 4311-4330. https://doi.org/10.1016/S0043-1354(03)00293-8
  9. Hashimoto, K. 1993. Chemical reaction engineering. Baifukan, Japan.
  10. Kratochvil, D., Volesky, B., Demopoulos, G., 1997. Optimizing Cu removal / recovery in a biosorption column, Water Research. 31, 2327-2339. https://doi.org/10.1016/S0043-1354(97)00071-7
  11. Say, R., Denizli, A., Arica, M.Y., 2001. Biosorption of cadmium(II), lead(II), and copper(II) with the filamentous fungus Phanerochaete chrysosporium, Bioresour. Technol. 76, 67-70. https://doi.org/10.1016/S0960-8524(00)00071-7
  12. Shim, J.H., Hwang, J.R., Lee, J.S., Kim, J.H., Kim, S.S., 2010. Variations in nutrients and $CO_{2}$ uptake with growth of Undaria pinnatifida from the south coast of korea, Kor. J. Fish Aquat. Sci. 43, 679-686. https://doi.org/10.5657/kfas.2010.43.6.679
  13. Stephen, B., Normal, S.W., 1986. Removal of heavy metals from wastewaters, B.&L. Information Service, Canada.
  14. Suh, K.H., Ahn, K.H., Cho, M.C., Cho, J.K., Jin, H.J., Hong, Y.K., 2001. Sargassum Confusum for biosorption of Pb and Cr, J. Korean Fish. Soc. 34, 1-6.
  15. Thomas, E.H., Drew. P.O., 1989. Metal finishing and processing, WPCF 61, 6-12.
  16. Vilar, V.J.P., Cidalia, B.M.S., Loureiro, J.M., Boaventura, R.A.R., 2008. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column, Bioresource Technology 99, 5830-5838. https://doi.org/10.1016/j.biortech.2007.10.007

Cited by

  1. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75