• Title/Summary/Keyword: sawdust particle

Search Result 35, Processing Time 0.159 seconds

Simulation and Model Validation of a Pneumatic Conveying Drying for Wood Dust Particles

  • Bhattarai, Sujala;Kim, Dae-Hyun;Oh, Jae-Heun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.82-89
    • /
    • 2012
  • Purpose: The simulation model of a pneumatic conveying drying (PCD) for sawdust was developed and verified with the experiments. Method: The thermal behavior and mass transfer of a PCD were modeled and investigated by comparing the experimental results given by a reference (Kamei et al. 1952) to validate the model. Momentum, energy and mass balance, one dimensional first order ordinary differential equations, were coded and solved into Matlab V. 7.1.0 (2009). Results: The simulation results showed that the moisture content reduced from 194% to 40% (dry basis), air temperature decreased from $512^{\circ}C$ to $128^{\circ}C$ with the particle residence time of 0.7 seconds. The statistical indicators, root mean square error and R-squared, were calculated to be 0.079, and 0.998, respectively, between the measured and predicted values of moisture content. The relative error between the measured and predicted values of the final pressured drop, air temperature, and air velocity were only 8.96%, 0.39% and 1.05% respectively. Conclusions: The predicted moisture content, final temperature, and pressure drop values were in good agreement with the experimental results. The developed model can be used for design and estimation of PCD system for drying of wood dust particles.

Temperature Strength of Sawdust-Mixing Concrete (폐톱밥 혼입 콘크리트의 온도 이력에 관한 실험적 연구)

  • Son, Ki-Sang;Hong, Seung-Ryul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.46-53
    • /
    • 2005
  • Existing study far fire-resistant concrete has been done already. but it is not found out how the waste tyre mixing concrete will be acted against fire. This waste tyre concrete molds under the condition of $0^{\circ}C,\;200^{\circ}C,\;400^{\circ}C,\;600^{\circ}C$ were heated in gas oven. It was worried about that they might be fractured down at about $800^{\circ}C$ so that they can not be tested. compressive strength for the test molds are made with commercially used $180kg/cm^2,\;210kg/cm^2,\;240kg/cm^2,\;270kg/cm^2$ mixing saw dust with proportion such as 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6%, 1.8%, 2.0% compressive strength at $200^{\circ}C$ was approximately 20% from the original, while approximately 30% deoreased at $400^{\circ}C$. their results are not quite different from the normal concrete condition even though they contains saw dust in it. The higher strength the concrete has, the less strength was decreased. There are almost no difference in strength under the condition of less than $400^{\circ}C$, but damage of concrete structure could be considerable large with more than $400^{\circ}C$.

Comparison of physical properties and air permeability in the sawdust during wetting and drying procedure (습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2009
  • Moisture is one of the important design factors that affects to the changes of physical properties and air permeability in the composting matrix. This study examines the effects of moisture during the wetting and drying procedure on physical properties like bulk density, particle size, free air space and air permeability in the sawdust used as the bulking agent in composting process. During both procedures of wetting and drying of the water, with increasing moisture content, bulk density and particle size increased, but FAS decreased. In the range of near 40 to 60% moisture content on a wet basis, particle size and FAS in wetting procedure were larger and higher than those in drying procedure. During wetting procedure, pressure drop continuously decreased ranging from near 20 to 60% moisture content, despite of decreasing FAS as a consequence of increasing moisture, and then over the range of 60% moisture content, pressure drop rapidly increased to the saturated moisture condition while the pore space was filled with the water. On the other hand, during drying procedure, pressure drop decreased from the saturated condition to 40% moisture content. In the recommended range of 50 to 60% moisture content for composting operation, pressure drop in wetting procedure were lower than in drying procedure. For the enhancement of the air permeability in the composting matrix, the wetting procedure was proper than the drying procedure, and the optimum moisture content for the efficient composting operation was appeared to be near 60%.

A Comparative Study on the Aerobic Biodegradation of the Continuous and Intermittent Aeration in Bin Composting System

  • Hong, Ji-Hyung;Choi, Byoung-Min;Park, Keum-Joo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.61-67
    • /
    • 2000
  • Composting of hog manure amended with sawdust trials lasted three weeks and used pilot-scale in bin composting system. Results showed that the rise temperature and carbon dioxide evolution in compost during the composting decomposition process were affected by the aeration method, pH, C/N, moisture content, bulk density and particle size distribution. No significant differences existed in biophysical properties of the composit produced from the continuous and intermittent aeration method. The intermittent aeration was very successful in compost odor control and required less time to reach stability than the continuous aeration.

  • PDF

Thin Layer Chromatography on the Influence of Hot Water Extractives of Domestic and Foreign Wood Species on the Cement Setting (국산(國産) 및 외국산(外國産) 수종(樹種)의 열수추출물(熱水抽出物)이 시멘트경화(硬化)에 미치는 영향(影響)에 대한 박층(薄層)크로마토그래피적(的) 분석(分析))

  • Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.67-72
    • /
    • 1993
  • Hot water extractives of sawdust/particle from domestic and foreign wood species, which were composed of pitch pine, Korean pine, larch, Italy poplar, acacia and oak as Korean wood species, Malaysian oil palm and German spruce were quantitatively analyzed with thin layer chromatography. Sugar components of saccharose, galactose, glucose, fructose and arabinose were contained in these wood species. It was assumed that arabinose and glucose are major inhibitory components against cement hardening in larch and oil palm, respectively, since both species contain a large amount of each sugar. In contrast, fructose might not influence so badly on a cement hardening, when considering that fructose was contained much in Italy poplar with a good cement hardening character. Galactose was a minor component.

  • PDF

Reduction Leaching of Manganese Dioxide Ore Using Black Locust as Reductant in Sulfuric Acid Solution

  • Xue, Jianrong;Zhong, Hong;Wang, Shuai;Li, Changxin;Li, Jinzhong;Wu, Fangfang
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.509-516
    • /
    • 2015
  • We investigated the reduction leaching process of manganese dioxide ore using black locust as reductant in sulfuric acid solution. The effect of parameters on the leaching efficiency of manganese was the primary focus. Experimental results indicate that manganese leaching efficiency of 97.57% was achieved under the optimal conditions: weight ratio of black locust to manganese dioxide ore (WT) of 4:10, ore particle size of $63{\mu}m$, $1.7mol{\cdot}L^{-1}\;H_2SO_4$, liquid to solid ratio (L/S) of 5:1, leaching time of 8 h, leaching temperature of 368 K and agitation rate of $400r{\cdot}min^{-1}$. The leaching rate of manganese, based on the shrinking core model, was found to be controlled by inner diffusion through the ash/inert layer composed of associated minerals. The activation energy of reductive leaching is $17.81kJ{\cdot}mol^{-1}$. To conclude the reaction mechanism, XRD analysis of leached ore residue indicates manganese compounds disappear; FTIR characterization of leached residue of black locust sawdust shows hemicellulose and cellulose disappear after the leaching process.

Development of Rapid Detection Method for Volatilized Formaldehyde from Wood (목재 폼알데하이드 신속검출 공정개발)

  • Kim, Jung-Im;Choi, Geun-Hyoung;Kwon, Oh-Kyung;Hong, Su-Myeong;Park, Yun-Gi;Ok, Yong-Sik;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • We designed a new rapid detection method for volatilized formaldehyde from wood. The process was installed with volatilizing and collecting parts in an incubator. For rapid sampling of formaldehyde from wood, we pulverized the wood to sawdust, and used 0.15-2.0 mm particles for the tests. The highest sampling rate (94.8%) was obtained at 40 mL/min flow rate and $100^{\circ}C$. Under the optimized condition, we could collect the volatilized formaldehyde with good recovery rate. The developed method was applied to the monitoring of the formaldehyde from wood, and the measured concentrations were 0.7-4.6 ${\mu}g/g$ from natural wood, 5.9-12.3 ${\mu}g/g$ from preserved wood, and 5.9-211.5 ${\mu}g/g$ from chemical adhesive processed wood. From the results, we identified natural wood sawdust and chemically processed wood (medium density fiberboard, high density fiberboard, particle board) by the formaldehyde contents except preserved wood.

Characterization of fine organic aerosols from biomass burning emissions using FTIR method (분광학적 방법을 이용한 바이오매스 연소 배출 유기 입자의 화학적 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.125-132
    • /
    • 2021
  • Fresh PM2.5 smokes emitted from combustion of four biomass materials (pellet, palm fruit fiber (PFF), PKS, and sawdust) in a laboratory-controlled environment were characterized using an attenuated total reflectance-fourier transform infrared (ATR-FTIR) technique. In smoke samples emitted from combustion of pellets, PFF and PKS, which is being used as boiler fuels for greenhouses in rural areas, the organic carbon/elemental carbon (OC/EC) ratios in PM2.5 were very high (14.0-35.5), whereas in sawdust smoke samples they were significantly low (<4.0) due to the combustion method close to flaming combustion. ATR-FTIR analysis showed that OH(3400-3250 cm-1), CH3(2958-2840 cm-1), CH2(2910 cm-1 and 2850 cm-1), ketone(1726-1697 cm-1), C=C(1607-1606 cm-1 and 1515-1514 cm-1), lignin (1463-1462 cm-1 and 1430-1428 cm-1) and -NO2(1360-1370 cm-1) peaks were identified in all biomass burning (BB) smoke samples. However, additional peaks appeared depending on the type of biomass. Among the four types of biomass materials, an additional peak of the methylene group CH3(2872-2870 cm-1) appeared only in PFF and PKS smoke samples, and a peak of C=O(1685 cm-1) was also confirmed. And in the case of PKS smoke samples, a peak of aromatic C=C(1593 cm-1 and 1476 cm-1) that did not appear in other BB samples was also observed. This indicates that the molecular structure of organic compounds emitted during BB differs depending on the type of biomass materials. The results of this study are expected to provide valuable information to more specifically reveal the effect of BB on PM2.5 collected in the atmospheric environment.

Studies on the Evaluation of Kenaf as a Bulking Agent in Livestock Composting (가축 분뇨의 퇴비화 수분 조절제로서 Kenaf의 유용성 평가)

  • Lim, Jeong-Ju;Kim, Dong-Hyeok;Lee, Jin-Ju;Kim, Dae-Geun;Lee, Hu-Jang;Min, Wongi;Park, Dongjin;Huh, Moo-Ryong;Chang, Hong-Hee;Kim, Pil-Joo;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • Hibiscus cannabinus L is a plant in the Malvaceae family. Kenaf was seeded at June 1st in 2010 and harvested at November 18th and dried and evaluated worth as a bulking agent for livestock composting. Harvested and dried Kenaf was divided into the bast, core and leaf. All materials were grinded by hammer mill and the moisture absorption, moisture evaporation, pH, volume weight and C/N ratio were measured. Kenaf was higher water absorption and evaporation ability than those of sawdust and chaff. The pH values of Kenaf were pH $2.8{\pm}0.01$ - $4.34{\pm}0.02$, which is lower pH value than those of sawdust (pH $5.28{\pm}0.01$) and chaff (pH $6.3{\pm}0.02$). The C/N ratio of Kenaf showed 649 of core, 204 of bast and 70 of leaf, which were lower than sawdust (789.1) but higher than chaff (132). In volume weight test, the materials were divided by particle size of Kenaf, named as group A(${\geq}4cm$), B(${\leq}4cm$, ${\geq}0.25cm$) and C(${\leq}0.25cm$). The volume of weight of group A and B for core, bast and leaf showed similar, but group C showed higher than those of sawdust and chaff. Especially, the volume weight of group C for leaf was 5 times higher than those of sawdust and chaff. This study suggested the possibility of using Kenaf as a bulk agent for composting of livestock manure. This is considered that strengthen the competitiveness of farmers through reducing the cost, prevention of environmental pollution caused by livestock manure and environmentally friendly processing of livestock manure.

Migration of Alkali and Alkaline Earth Metallic Species and Structure Analysis of Sawdust Pyrolysis Biochar

  • Zhao, Yijun;Feng, Dongdong;Zhang, Yu;Tang, Wenbo;Meng, Shun;Guo, Yangzhou;Sun, Shaozeng
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.659-664
    • /
    • 2016
  • In order to resolve the AAEM species migration routes and the interaction relationship between biochar structure and AAEM species during biomass pyrolysis, experiments were performed in an entrained flow reactor with $N_2$ at $500{\sim}900^{\circ}C$. ICP-AES, XPS and SEM-EDX were used to examine content and distribution of AAEM species and the physicochemical structures of biochar. The results show that at $500{\sim}700^{\circ}C$, the precipitation rate of AAEM species is relatively high. At high temperature (>$700^{\circ}C$), the AAEM species continue to migrate from interior to exterior, but little precipitation from biochar surface. And the migration of AAEM species is mainly realized by the C-O bond as the carrier medium. The AAEM species on biochar surface are mainly Na, Mg and Ca (<$700^{\circ}C$), while changing to K, Mg and Ca (${\geq}700^{\circ}C$). From $500^{\circ}C$ to $900^{\circ}C$, the biochar particle morphology gradually changes from fibers to porous structures, finally to molten particles. At $700{\sim}900^{\circ}C$, Ca element is obviously enriched on the molten edge of the biochar porous structures.