• Title/Summary/Keyword: satellite pollution monitoring

Search Result 39, Processing Time 0.026 seconds

New Approach to Air Quality Management (대기오염관리의 새로운 접근방법)

  • 윤명조
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.2
    • /
    • pp.25-48
    • /
    • 1993
  • International concern over the environmental pollution is ever increasing, and diversified countermeasures must be devised in Korea also. Global trend, damages, problems and countermeasures with respect to issues mentioned in the Rio Declaration, such as prevention of ozone layer destruction, reduction of migratory atmospheric pollution between neighboring countries, and prevention of global greenhouse effect, were discussed in this report. Conclusion of the report is summarized as follows : A. Measurement, Planning and Monitoring (1) Development and implementation of a global network for measurement and monitoring from the global aspects such factors as related to acid rain(Pioneer substances, pH, sulfate, nitrate), effect of global temperature(Air temperature, $CO_2$, $CH_4$, CFC, $N_2O$) and destruction of ozone layer($CFC_S$). (2) Establishment of network system via satellite monitoring movement of regional air mass, damage on the ozone layer and ground temperature distribution. B. Elucidation of Present State (1) Improvement and development of devices for carbon circulation capable of accurately forecasting input and output of carbon. (2) Developmental research on chemical reactions of greenhouse gas in the air. (3) Improvement and development of global circulation model(GCM) C. Impact Assessment Impact assessment on ecosystem, human body, agriculture, floodgate, land use, coastal ecology, industries, etc. D. Preventive Measures and Technology Development (1) Development and consumption of new energy (2) Development of new technology for removal of pioneer substances (3) Development of substitute matter for $CFC_S$ (4) Improvement of agriculture and forestry means to prevent the destruction of ozone layer and the greenhouse effect of the globe (5) Improvement of housing to prevent the destruction of ozone layer and the greenhouse effect of the globe (6) Development of new technology for probing underground water (7) Preservation of forest (8) Biomass 5. Policy Development (1) Development of strategy model (2) Development of long term forecast model (3) Development of penalty charge effect and expense evaluation methods (4) Feasibility study on regulations By establishing the above mentioned measures for environmentally sound and sustainable development to establish the right to live for humankind and to preserve the one and only earth.

  • PDF

URBAN ENVIRONMENTAL QUALITY ANALYSIS USING LANDSAT IMAGES OVER SEOUL, KOREA

  • Lee, Kwon-H.;Wong, Man-Sing;Kim, Gwan-C.;Kim, Young-J.;Nichol, Janet
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.556-559
    • /
    • 2007
  • The Urban Environmental Quality (UEQ) indicates a complex and various parameters resulting from both human and natural factors in an urban area. Vegetation, climate, air quality, and the urban infrastructure may interact to produce effects in an urban area. There are relationships among air pollution, vegetation, and degrading environmental the urban heat island (UHI) effect. This study investigates the application of multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air quality and UHI intensity in Seoul from 2000 to 2006 in fine resolution (30m) using the emissivity-fusion method. The Haze Optimized Transform (HOT) correction approach has been adopted for atmospheric correction on all bands except thermal band. The general UHI values (${\Delta}(T_{urban}-T_{rural})$) are 8.45 (2000), 9.14 (2001), 8.61 (2002), and $8.41^{\circ}C$ (2006), respectively. Although the UHI values are similar during these years, the spatial coverage of "hot" surface temperature (>$24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84(2002), and 0.89 (2006), respectively. Air quality is shown to be an important factor in the spatial variation of UEQ. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

  • PDF

Development Trend of Geostationary Environment Monitoring Payloads (환경감시용 정지궤도위성 탑재센서 개발동향)

  • Lee, Seung-Hoon;Kim, Sung-Kyu;Yeon, Jeoung-Heum;Kim, Seong-Hui;Ko, Dai-Ho;Yong, Sang-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2010
  • Environment and climate changes affect all aspects of our society. The enhanced remote sensing technology made the satellite to be widely used in the environment monitoring applications. Geostationary environmental monitoring is also actively researched due to the increased needs for the monitoring of diurnal environmental changes, troposhperic pollution and its origin. In this paper, recent development trends of geostationary environment monitoring payloads are introduced. GEO-CAFE and GIFTS missions are researched by the leading of the NASA and Sentinel-4 by the ESA. Those missions are in the state of detailed conceptual design and hardware development preparing with the launch plan in the late 2010s. By considering these development trends, domestic environment monitoring payloads shall be developed with careful analysis on the mission and data application.

  • PDF

Spatial and Temporal Assessment of Particulate Matter Using AOD Data from MODIS and Surface Measurements in the Ambient Air of Colombia

  • Luna, Marco Andres Guevara;Luna, Fredy Alejandro Guevara;Espinosa, Juan Felipe Mendez;Ceron, Luis Carlos Belalcazar
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.165-177
    • /
    • 2018
  • Particulate matter (PM) measurements are important in air quality, public health, epidemiological studies and decision making for short and long-term policies implementation. However, only few cities in the word have advance air quality-monitoring networks able to provide reliable information of PM leaves in the ambient air, trends and extent of the pollution. In Colombia, only major cities measure PM concentrations. Available measurements from Bogota, Medellin and Bucaramanga show that PM concentration are well above World Health Organization guidelines, but up to now levels and trends of PM in other cities and regions of the country are not well known. Satellite measurements serve as an alternative approach to study air quality in regions were surface measurements are not available. The aim of this study is to perform a spatial and temporal assessment of PM in the ambient air of Colombia. We used Aerosol optical depth (AOD) retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite of NASA and surface measurements from the air quality networks of Bogota, Medellin and Bucaramanga. In a first step, we estimated the correlation between MODIS-AOD and monthly average surface measurements (2000 to 2015) from these three cities, obtaining correlation coefficient R values over 0.4 for the cities under study. After, we used AOD and $PM_{10}$ measurements to study the temporal evolution of PM in different cities and regions. Finally, we used AOD measurements to identify cities and regions with the highest AOD levels in Colombia. All the methods presented in this paper may serve as an example for other countries or regions to identify and prioritize locations that require the implementation of more accurate air quality measurements.

Analysis of Groundwater Pollution Potential and Development of Graphic User Interface using DRASTIC System (DRASTIC을 이용한 지하수 오염 가능성 분석 및 그래픽 사용자 인터페이스 개발연구)

  • 민경덕;이영훈;이사로;김윤종;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.101-109
    • /
    • 1996
  • DRASTIC system was used in this study that was developed by U.S. EPA and is widely used for evaluating relative groundwater pollution potential by using hydrogeological factors. The DRASTIC system can be used for selection of well sites, selection of waste disposal sites and basic data of landuse for groundwater protection, and monitoring purpose and efficient allocation of resource for remediation. This study analyzed regional groundwater pollution potential around Chungju Lake using the DRASTIC system. Hydrogeological factors used in this study are depth to water, net recharge, aquifer media, soil media, slope and hydraulic conductivity. For accurate analysis, lineament density that is extracted from image processing of satellite image is overlaid to the DRASTIC system. Results of this study are mapped so groundwater pollution potential and risk degrees can be understood easily and quickly. A graphic user interface is developed to process the data conveniently.

  • PDF

Impact of Northeast Asian Biomass Burning Activities on Regional Atmospheric Environment (동북아시아 지역의 바이오매스 연소 활동이 지역 대기 환경에 미치는 영향)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.184-196
    • /
    • 2012
  • Biomass burning activities(BBA) are caused by both natural and anthropogenic origins. Due to emissions of greenhouse gases and atmospheric aerosols during the burning process, BBA has been known to be one of important sources of atmospheric pollution and the climate change. However, the monitoring of BBA and its effects on atmospheric environment are not simple. This study evaluates the trends of BBA and its impact on atmospheric environment by using earth observing satellite. The results show that the most BBA were found over ever green, green vegetation types, and irrigated land cover types in study region. The trends of BBA and aerosol optical thickness which represents relative aerosol loading in the atmosphere, show similar pattern. Aerosol increases caused by BBA highlight the effectiveness of these mechanisms and would affect the regional atmospheric environment and climate change.

Monitoring of the Sea Surface Temperature in the Saemangeum Sea Area Using the Thermal Infrared Satellite Data (열적외선 위성자료를 이용한 새만금 해역 해수표면온도 모니터렁)

  • Yoon, Suk;Ryu, Joo-Hyung;Min, Jee-Eun;Ahn, Yu-Hwan;Lee, Seok;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.339-357
    • /
    • 2009
  • The Saemangeum Reclamation Project was launched as a national project in 1991 to reclaim a large coastal area of 401 km$^2$ by constructing a 33-km long dyke. The final dyke enclosure in April 2006 has transformed the tidal flat into lake and land. The dyke construction has abruptly changed not only the estuarine tidal system inside the dyke, but also the coastal marine environment outside the dyke. In this study, we investigated the spatial change of SST distribution using the Landsat-5/7 and NOAA data before and after the dyke completion in the Saemangeum area. Satellite-induced SST was verified by compared with the various in situ measurements such as tower, buoy, and water sample. The correlation coefficient resulted in above 0.96 and RMSE was about 1$^{\circ}C$ in all data. 38 Landsat satellite images from 1985 to 2007 were analyzed to estimate the temporal and spatial change of SST distribution from the beginning to the completion of the Samangeum dyke's construction. The seasonal change in detailed spatial distribution of SST was measured, however, the estimation of change during the Saemangeum dyke's construction was hard to figure out owing to the various environmental conditions. Monthly averaged SST induced from NOAA data from 1998 to 2007 has been analyzed for a complement of Landsat's temporal resolution. At the inside of the dyke, the change of SST from summer to winter was large due to the relatively high temperature in summer. In this study, multi-sensor thermal remote sensing is an efficient tool for monitoring the temporal and spatial distribution of SST in coastal area.

The Development of Water Quality Monitoring System and its Application Using Satellite Image Data

  • Jang, Dong-Ho;Jo, Gi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.376-381
    • /
    • 1998
  • In this study, we was measured the radiance reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the multi-purpose satellite(KOMPSAT) to use the data in analyzing water pollution. Also we investigated the possibility of extraction of water quality factors in rivers and water body by using high resolution remote sensing data such as Airborne MSS. Especially, we tried to extract the environmental factors related with eutrophication, and also tried to develop the process technique and the radiance feature of reflectance related with eutrophication. The results were summarized as follows: First, the spectrum of sun's rays which reaches the surface of the earth was consistent with visible rays bands of 0.4${\mu}{\textrm}{m}$~0.7${\mu}{\textrm}{m}$ and about 50% of total quantity of radiation were there. And at around 0.5${\mu}{\textrm}{m}$ of green spectral band in visible rays bands, the spectrum was highest. Second, as a result of the radiance reflectance Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and suspended sediments and turbidity represented high spectral reflectance at 0.8${\mu}{\textrm}{m}$ and at 0.57${\mu}{\textrm}{m}$ each. Third, as a result of the water quality analysis by using Airborne MSS, Chlorophyll-a could have a distribution chart when carried out ratio of B3 and BS to B7. And Band 7 was useful for making the distribution chart of suspended sediments. And when we carried out PCA, suspended sediments and turbidity had distributions at PC 1 , PC 4 each similarly to ground truth data. Above results can be changed according to the change of season and time. Therefore, in order to analyze more exactly the environmental factors of water quality by using LRC data, we need to investigate constantly the ground truth data and the radiance feature of reflectance of water body. Afterward in this study, we will constantly analyze the radiance feature of the surface of water in water body by measuring the on-the-spot radiance reflectance and using low resolution satellite image(SeaWiFs). Besides, we will gather the data of water quality analysis in water body and analyze the pattern of water pollution.

  • PDF

Study on Improvement of Oil Spill Prediction Using Satellite Data and Oil-spill Model: Hebei Spirit Oil Spill (인공위성 원격탐사 데이터와 수치모델을 이용한 해상 유출유 예측 향상 연구: Hebei Spirit호 기름 유출 적용)

  • Yang, Chan-Su;Kim, Do-Youn;Oh, Jeong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.435-444
    • /
    • 2009
  • In the case of oil spill accident at sea, information concerning the movement of spilled oil is important in making response strategies. Aircrafts and the satellites have been utilized for monitoring of spilled oil. In these days, numerical models are using to predict the movement of the spilled oil. In the future a coupling method of modeling and remote sensing data should be needed to predict more correctly the spilled oil. The purpose of this paper is to present an application of satellite image data to an oil spill prediction model as an initial condition. Environmental Fluid Dynamics Computer Code (EFDC) was used to predict the movement of the oil spilled from Hebei Spirit incident occurred in Taean coastal area on December 7,2007. In order to make the model initial condition and to compare the model results, two satellite images, KOMPSAT-2 MSC and ENVISAT ASAR obtained on December 8 and 11, were used during the period of the oil spill incident. The model results showed an improvement for the prediction of the spilled oil by using the initial condition deduced from satellite image data than the initial condition specified at the oil spill incident site in the respects of the distributed spilled area.

Russian Forest Fire Smoke Aerosol Monitoring Using Satellite and AERONET Data (인공위성 자료와 AERONET 관측자료를 이용한 러시아산불 시 발생한 에어로졸의 중장거리 모니터링)

  • 이권호;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.437-450
    • /
    • 2004
  • Extensive forest fire activities occurred across the border in Russia, particularly east of Lake Baikal between the Amur and Lena rivers in May 2003. These forest fires released large amounts of particulates and gases into the atmosphere, resulting in adverse effects on regional air quality and the global radiation budget. Smoke pollution from the Russian fires near Lake Baikal was transported to Korea through Mongolia and eastern China. On 20 May 2003, a number of large fires were burning in eastern Russian, producing a thick, widespread pall of smoke over much of Northeast Asia. In this study, separation technique was used for aerosol retrieval application with imagery from MODIS aboard TERRA satellites. MODIS true-color image shows the location of fires and the grayish color of the smoke plumes over Northeast Asia. Aerosol optical thckness (AOT) retrieved from the MODIS data were compared with fire hot spots, ground-based radiation data and TOMS -based aerosol index data. Large AOT, 2.0-5.0 was observed on 20 May 2003 over Korea due to the influence of the long range transport of smoke aerosol plume from the Russian fires, while surface observed fine mode of aerosol size distribution increased.