DOI QR코드

DOI QR Code

Study on Improvement of Oil Spill Prediction Using Satellite Data and Oil-spill Model: Hebei Spirit Oil Spill

인공위성 원격탐사 데이터와 수치모델을 이용한 해상 유출유 예측 향상 연구: Hebei Spirit호 기름 유출 적용

  • Yang, Chan-Su (Korea Ocean Satellite Center, Korea Ocean Research & Development Institute (KORDI)) ;
  • Kim, Do-Youn (Dohwa Consulting Engineers Co., Ltd.) ;
  • Oh, Jeong-Hwan (Marine Safety & Pollution Response Research Department, Maritime Ocean Engineering Research Institute (MOERI)/KORDI)
  • 양찬수 (한국해양연구원 해양위성.관측기술연구부 해양위성센터) ;
  • 김도연 ((주)도화종합기술공사) ;
  • 오정환 (한국해양연구원 해양안전.방제기술연구부)
  • Published : 2009.10.31

Abstract

In the case of oil spill accident at sea, information concerning the movement of spilled oil is important in making response strategies. Aircrafts and the satellites have been utilized for monitoring of spilled oil. In these days, numerical models are using to predict the movement of the spilled oil. In the future a coupling method of modeling and remote sensing data should be needed to predict more correctly the spilled oil. The purpose of this paper is to present an application of satellite image data to an oil spill prediction model as an initial condition. Environmental Fluid Dynamics Computer Code (EFDC) was used to predict the movement of the oil spilled from Hebei Spirit incident occurred in Taean coastal area on December 7,2007. In order to make the model initial condition and to compare the model results, two satellite images, KOMPSAT-2 MSC and ENVISAT ASAR obtained on December 8 and 11, were used during the period of the oil spill incident. The model results showed an improvement for the prediction of the spilled oil by using the initial condition deduced from satellite image data than the initial condition specified at the oil spill incident site in the respects of the distributed spilled area.

해상 기름유출사고 시, 효율적인 방제 전략을 위해서는 유출유의 위치 및 이동 특성을 파악하는 것이 매우 중요하다. 일반적으로 유출유의 모니터링은 항공기와 인공위성을 이용하고 있으며, 유출된 기름의 이동 경로를 예측하기 위해 수치모델이 적용되고 있다. 하지만, 원격탐사에 의한 모니터링 정보를 이용한 수치모델의 초기조건 적용은 이루어지지 않고 있다. 본 논문에서는 인공위성 자료를 통해 추출된 유출유 정보를 이용한 예측 모델의 활용가능성을 제시하고자 한다. EFDC 3차원 수치모델을 이용하여 2007년 12월 7일 태안 해안에서 발생한 Hebei Spirit호 기름유출사고의 유출유 이동을 예측하였다. 모델 초기조건과 모델결과 비교를 위하여, 12월 8일 KOMPSAT-2 MSC와 12월 11일 EVNISAT ASAR위성자료로부터 추출된 유출유 정보를 사용하였다. 모델초기 조건으로 인공위성 자료를 이용한 경우가 사고지점에서 유출을 가정하여 방류한 초기조건보다 유출된 기름의 분포측면에서 더 개선된 결과를 보였다.

Keywords

References

  1. 서승남, 2008. 한국 주변해역 30초 격자수심, 한국해안·해양공학회논문집, 20(1): 110-120
  2. 서승원, 이화영, 2008. 새만금호 완공에 따른 수질변화모의, 대한토목학회논문집, 28(1): 79-93
  3. 소방방재청, 2007 재난연감, 2007
  4. 정정호, 김국진, 양근호, 장윤영, 박선환, 김영택, 2007. 경기만내 담수 유입으로 인한 시공간적인 염분변화에 대한 연구, 환경영향평가, 16(6): 421-432
  5. 허영택, 박진혁, 2009. EFDC 모형의 낙동강 하류부 수리해석 적용성 평가, 한국수자원학회논문집, 42(4): 309-317 https://doi.org/10.3741/JKWRA.2009.42.4.309
  6. Abascal, A. J., S. Castanedo, F. J. Mendez, R. Medina, and I. J. Losada, 2009. Calibration of a lagrangian transport model using drifting buoys deployed during the Prestige oil spill, Journal of Coastal Research, 25(1): 80-90 https://doi.org/10.2112/07-0849.1
  7. Bennet, J. R. and A. H. Clites, 1987. Accuracy of trajectory calculation in a finite-difference circulation model, Journal of Computational Physics, 68: 272-282 https://doi.org/10.1016/0021-9991(87)90058-1
  8. ESA, 2007. ENVISAT ASAR Product Handbook, European Space Agency
  9. Fay, J. A., 1969. The spread of oil slicks on a calm sea, Oil on the Sea, Plenum Press, 53-63
  10. Fay, J. A., 1971. Physical processes in the spread of oil on water surface, Proceedings of the 1971 Oil Spill Conference, American Petroleum Institute, Washington D.C., 463-468.
  11. Hamrick, J. M., 1992. A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects, Special Report in Applied Marine Science and Ocean Engineering, No. 317, Virginia Institute of Marine Science (VIMS), VA.
  12. Hamrick, J. M., 1994. Evaluation of island creation alternatives in the Hampton Flats of the James River, Report to the U.S. Army Corps of Engineers, Norfolk District
  13. Hamrick, J. M. and M. Z. Moustafa, 2001a. Development of the Everglades wetland hydrodynamic model, Part I: Model formulation and physical processes representation
  14. Hamrick, J. M. and M. Z. Moustafa, 2001b. Development of the Everglades wetland hydrodynamic model, Part II: Computational implementation of the model.
  15. IMO, 1988. Manual on oil pollution: Section IV Combating oil spills, IMO, London.
  16. ITOPF, 2008. Technical Information Paper No. 1: Aerial Observation of Oil, The International Tanker Owners Pollution Federation
  17. Ji, Z.-G., M. R. Morton, and J. M. Hamrick, 2001. Wetting and drying simulation of estuarine processes, Estuarine, Coastal and Shelf Science, 53(3): 683-700 https://doi.org/10.1006/ecss.2001.0818
  18. Jin, K.-R., J. H. Hamrick, and T. Tisdale, 2001. Application of three-dimensional hydrodynamic model for Lake Okeechobee, ASCE Journal of Hydraulic Engineering, 126: 758-771 https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(758)
  19. Jin, K. R. and Z. G. Ji, 2004. Case Study: Modeling of sediment transport and wind-wave impact in Lake Okeechobee, Journal of Hydraulic Engineering, 130: 1055-1067 https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1055)
  20. Kuo, A. Y., J. Shen, and J. M. Hamrick, 1996. The effect of acceleration on bottom shear stress in tidal estuaries, ASCE journal of Waterways, Ports, Coastal and Ocean Engineering, 122: 75- 83 https://doi.org/10.1061/(ASCE)0733-950X(1996)122:2(75)
  21. Mellor, G. L. and T. Yamada, 1982. Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 20: 851-875 https://doi.org/10.1029/RG020i004p00851
  22. Park, K., H. S. Jung, H. S. Kim, and S. M. Ahn, 2005. Three-dimensional hydrodynamiceutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea, Marine Environ. Res., 60(2): 171-193 https://doi.org/10.1016/j.marenvres.2004.10.003
  23. Pavlakis, P., D. Tarchi, and A. Sieber, 2001. On the Monitoring of Illicit Vessel Discharges, Areconnaissance study in the Mediterranean Sea, European Commission Report EUR 19906 EN, 2001
  24. Shen, J., J. D. Boon, and A. Y. Kuo, 1999. A modeling study of atidal intrusion front and its impact on larval dispersion in the James River estuary, Virginia, Estuaries, 22: 681-692 https://doi.org/10.2307/1353055
  25. Topouzelis, K. N., 2008. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms, Sensors, 8: 6642-6659 https://doi.org/10.3390/s8106642
  26. Tuckey, B. J., M. T. Gibbs, B. R. Knight, and P. A. Gillespie, 2006. Tidal circulation in Tasman and Golden Bays: implications for river plume behavior, New Zealand Journal of Marine and Freshwater Research, 40: 305-324 https://doi.org/10.1080/00288330.2006.9517423
  27. US Environmental Protection Agency, 1997. Compendium of tools for watershed assessment and TMDL development, EPA841-B-97-006, Office of Water, Washington, DC
  28. Zou, R., Carter, S., Shoemaker, L., Parker, A., and Henry, T., 2006. An integrated hydrodynamic and water quality modeling system to support nutrient TMDL development for Wissahickon Creek, Journal of Environmental Engineering, 132: 555-566. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:4(555)