DOI QR코드

DOI QR Code

Impact of Northeast Asian Biomass Burning Activities on Regional Atmospheric Environment

동북아시아 지역의 바이오매스 연소 활동이 지역 대기 환경에 미치는 영향

  • Lee, Kwon-Ho (Dept. of Satellite Geoinformatic Engineering, Kyungil University)
  • 이권호 (경일대학교 위성정보공학과)
  • Received : 2012.01.31
  • Accepted : 2012.03.17
  • Published : 2012.03.31

Abstract

Biomass burning activities(BBA) are caused by both natural and anthropogenic origins. Due to emissions of greenhouse gases and atmospheric aerosols during the burning process, BBA has been known to be one of important sources of atmospheric pollution and the climate change. However, the monitoring of BBA and its effects on atmospheric environment are not simple. This study evaluates the trends of BBA and its impact on atmospheric environment by using earth observing satellite. The results show that the most BBA were found over ever green, green vegetation types, and irrigated land cover types in study region. The trends of BBA and aerosol optical thickness which represents relative aerosol loading in the atmosphere, show similar pattern. Aerosol increases caused by BBA highlight the effectiveness of these mechanisms and would affect the regional atmospheric environment and climate change.

바이오매스 연소 활동은 인위적 또는 자연적인 원인에 의하여 발생하며 연소과정에서 다량의 대기오염물질을 배출한다. 이 과정에서 발생한 온실가스와 대기 에어러솔은 대기환경 저해와 기후변화의 원인으로 알려져 있으나 바이오매스 연소 활동에 대한 감시와 대기환경에 미치는 영향을 파악하기가 쉽지 않다. 본 연구는 동북아 지역의 바이오매스 연소 활동의 현황과 대기환경에 미치는 영향을 평가하고자, 지구관측 위성인 Terra/MODIS 관측 자료를 이용하였다. 바이오매스 연소의 발생 원인은 매우 다양하지만, 주 연료가 공급되는 토지피복과 계절별 변화에 의존하므로, 본 연구에서는 지역별 토지피복과의 관련성과 시간에 따른 현황과 변화 패턴을 분석하였다. 그 결과, 가장 넓은 영역을 차지하고 있는 녹지대 또는 상록수림 지역에서의 발생수가 많았으며, 경작지에도 많은 발생횟수를 나타내었다. 그리고 대기 오염물질 중 하나인 대기 에어러솔의 상대적인 양을 나타내는 에어러솔 광학두께자료와 연소 자료와 비교결과는 두 산출물간 뚜렷한 연중 변화와 관련성이 있는 것으로 나타났다. 즉, 바이오매스 연소 활동이 지역 대기환경에 미치는 영향을 증명하였으며, 중국대륙에서 발생빈도가 증가하고 있어 지역 대기환경 및 기후변화에 영향을 줄 것으로 예상된다.

Keywords

Acknowledgement

Supported by : 경일대학교

References

  1. 이권호. 2011. 지구관측 위성자료를 이용한 주요 대기 에어러솔 성분의 공간분포 분석. 한국지리정보학회지 14(2):109-127.
  2. 이권호, 김정은, 김영준, 서애숙, 안명환. 2002. GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링. 한국지리정보학회지 5(2):1-15.
  3. 이시영, 강용석, 안상현, 오정수. 2002. GIS를 이용한 산불피해지역 특성 분석. 한국지리정보학회지 5(1):20-26.
  4. Damoah, R., N. Spichtinger, C. Forster, P. James, I, Mattis, U. Wandinger, S. Beirle and A. Stohl. 2004. Around the world in 17 days-Hemispheric-scale transport of forest fire smoke from Russia in May 2005. Atmospheric Chemistry and Physics 4:1311-1321, doi:10.5194/acp-4-1311-2004.
  5. Edwards, D.P., L.K. Emmons, D.A. Hauglustaine, D.A. Chu, J.C. Gille, Y.J. Kaufman, G. Petron, L.N. Yurganov, L. Giglio, M.N. Deeter, V. Yudin, D.C. Ziskin, J. Warner, J.F. Lamarque, G.L. Francis, S.P. Ho, D. Mao, J. Chen, E.I. Grechko and J.R. Drummond. 2004. Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. Journal of Geophysical Research 109, D24202, doi:10.1029/2004JD004727.
  6. Hobbs, P.V., J.S. Reid, R.A. Kotchenruther, R.J. Ferek and R. Weiss. 1997. Direct radiative forcing by smoke from biomass burning. Science 272:1776-1778.
  7. Jacob, D.J., B.G. Heikes and S.M. Fan. 1996. Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin. Journal of Geophysical Research 101(D19):24235-24250. https://doi.org/10.1029/96JD00336
  8. Justice, C.O., L. Giglio, S. Korontzi, J. Owens, J.T. Morisette, D.P. Roy, J. Descloitres, S. Alleaume, F. Petitcolin and Y. Kaufman. 2002. The MODIS fire products. Remote Sensing of Environment 83:244-262. https://doi.org/10.1016/S0034-4257(02)00076-7
  9. Kaufman, Y.J., A.W. Setzer, C.O. Justice, C.J. Tucker, M.C. Pereira, I. Fung. 1990. Remote sensing of biomass burning in the tropics. In: J.G. Goldammer(Ed.). Fire and the Tropical Biota : Ecosystem Processes and Global Challenges. Springer-Verlag, Berlin, Germany, pp.371- 399.
  10. Kaufman, Y.J., P.V. Hobbs, V.W.J.H. Kirchhoff, P. Artaxo, L.A. Remer, B.N. Holben, M.D. King, D.E. Ward, E.M. Prins, K.M. Longo, L.F. Mattos, C.A. Nobre, J.F. Spinhirne, Q. Ji, A.M. Thompson, J.F. Gleason, S.A. Christopher and S.C. Tsay. 1997. Smoke, Clouds and Radiation-Brazil (SCAR-B) Experiment. Journal of Geophysical Research 103(31):783-808.
  11. Koren, I., L.A. Remer and K. Longo. 2007. Reversal of trend of biomass burning in the Amazon, Geophysical Research Letters 34, L20404, doi: 10.1029/2007GL031530.
  12. Koren, I., Y.J. Kaufman, L.A. Remer and J.V. Martins. 2004. Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303:1342- 1345. https://doi.org/10.1126/science.1089424
  13. Lee, K.H., J.E. Kim, Y.J. Kim, J. Kim and W. von Hoyningen-Huene. 2005. Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during may 2003. Atmospheric Environment, 39(2): 85-99, doi:10.1016/j.atmosenv.2004.09.032.
  14. Lee, K.H., Y.J. Kim and M.J. Kim. 2006.Characteristics of Aerosol Observedduring Two Severe Haze Events overKorea in June and October 2004.Atmospheric Environment 40:5146-5155. doi:10.1016/j.atmosenv.2006.03.050.
  15. Lee, K.H., Z. Li and Y.J. Kim, 2007.SWIR/VIS reflectance ratio over Koreafor aerosol retrieval. Korean Journal of Remote Sensing, 23(1):1-5.
  16. Levy, R.C., L.A. Remer, S. Mattoo, E.F.Vermote and Y.D. Kaufman, 2007. Asecond generation algorithm forretrieving aerosol properties over landfrom MODIS spectral reflectance.Journal of Geophysical Research 112:D13211. https://doi.org/10.1029/2006JD007811
  17. Li, Z., F. Niu, K.H. Lee, J. Xin, W.M. Hao, B. Nordgren, Y. Wang and P. Wang. 2007. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. Journal of Geophysical Research 112, D22S07, doi:10.1029/2007JD008479.
  18. Malhi, Y., J. Roberts, R. Betts, T. Killeen, W. Li and C. Nobre. 2008. Climate Change, Deforestation, and the Fate of the Amazon. Science, 319(5860):169- 172. doi:10.1126/science.1146961.
  19. Penner, J.E., C.C. Chuang and K. Grant. 1998. Climate forcing by carbonaceous and sulfate aerosols. Climate Dynamics 14(12):839-851. https://doi.org/10.1007/s003820050259
  20. Remer, L.A., Y.J. Kaufman, D. Tanré, S. Mattoo, D.A. Chu, J.V. Martins, R.R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote and B.N. Holben. 2005. The MODIS Aerosol Algorithm, Products and Validation. Journal of Atmospheric Science 62:947-973. https://doi.org/10.1175/JAS3385.1
  21. Ross, J.L., P.V. Hobbs and B. Holben. 1998. Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil: closure tests and direct radiative forcing. Journal of Geophysical Research 103 (31):925-941.
  22. Sophie, B., D. Pierre and V.B. Eric. 2010. GLOBCOVER 2009 Products Description and Validation Report. ESA.
  23. Streets D.G., K.F. Yarber, J.H. Woo and G.R. Carmichael. 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17(4):1099, 2003GB002040.
  24. Torres, O., Z. Chen, H. Jethva, C. Ahn, S.R. Freitas and P.K. Bhartia. 2010. OMI and MODIS observations of the anomalous 2008-2009 southern hemisphere biomass burning seasons. Atmospheric Chemistry and Physics 10(8):3505-3513. https://doi.org/10.5194/acp-10-3505-2010
  25. Wotawa, G. and M. Trainer. 2000. The influence of Canadian forest fires on pollutant concentrations in the United States. Science 288:324-328. https://doi.org/10.1126/science.288.5464.324

Cited by

  1. Satellite-measured atmospheric aerosol content in Korea: anthropogenic signals from decadal records vol.53, pp.5, 2016, https://doi.org/10.1080/15481603.2016.1214351
  2. 3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.2
  3. Characteristics of Aerosol Mass Concentrations and Size Distribution Measured at Anheung, Korea vol.34, pp.5, 2018, https://doi.org/10.5572/KOSAE.2018.34.5.677
  4. Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data vol.34, pp.3, 2018, https://doi.org/10.5572/KOSAE.2018.34.3.493
  5. 해색위성 원격탐사를 이용한 부유성 녹조 모니터링 vol.15, pp.3, 2012, https://doi.org/10.11108/kagis.2012.15.3.137
  6. 천리안위성 해양탑재체 자료를 이용한 대기산란 효과가 제거된 컬러합성 영상 제작 vol.16, pp.1, 2013, https://doi.org/10.11108/kagis.2013.16.1.036
  7. PM10농도의 시공간적 분포 특징과 국지적 기온 변화 간의 상관관계: 부산광역시 사례 분석 vol.23, pp.1, 2012, https://doi.org/10.26863/jkarg.2017.02.23.1.151
  8. Characteristics of Haze Episode in 2019 December by Using Satellite and Ground Measurements with Trajectory Model vol.36, pp.1, 2020, https://doi.org/10.5572/kosae.2020.36.1.128
  9. Characteristics of Atmospheric Aerosols Based on Column Measurements by Using Machine Learning Clustering vol.36, pp.5, 2020, https://doi.org/10.5572/kosae.2020.36.5.608