• Title/Summary/Keyword: satellite motion

Search Result 188, Processing Time 0.026 seconds

Classification of Precipitation Type Using the Wind Profiler Observations and Analysis of the Associated Synoptic Conditions: Years 2003-2005 (윈드프로파일러 관측 자료를 이용한 장마철 강수 형태 분류와 관련된 종관장의 특성 분석: 2003년-2005년)

  • Won, Hye-Yeong;Jo, Cheon-Ho;Baek, Seon-Gyun
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.235-246
    • /
    • 2006
  • Remote sensing techniques using satellites or the scanning weather radars depend mostly on the presence of clouds or precipitation, and leave the extensive regions of clear air unobserved. But wind profilers provide the most direct measurements of mesoscale vertical air motion in the troposphere, even in the context of heavy precipitation. In this paper, the precipitation events during the Changma period was classified into 4 precipitation types - stratiform, mixed stratiform/ convective, deep convective, and shallow convective. The parameters for the classification of analysis are the vertical structure of reflectivity, Doppler velocity, and spectral width measured with the wind profiler at Haenam for a three-year period (2003-2005). In addition, the synoptic fields and total amount of precipitation were analyzed using the Global Final Analyses (FNL) data and the Global Precipitation Climatology Project (GPCP) data. During the Changma period, the results show that the stratiform type was dominant under the moist-neutral atmosphere in 2003, whereas the deep convective type was under the moist unstable condition in 2004. The stratiform type was no less popular than the deep convective type among four seasons because the moist neutral layer was formed by the convergence between the upper-level jet and the low-level jet, and by the moisture transport along the western rim of the North Pacific subtropical anticyclone.

UNCERTAINTIES IN AMV ESTIMATION

  • Sohn, Eun-Ha;Cho, Hee-Je;Ou, Mi-Lim;Kim, Yoon-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.153-155
    • /
    • 2007
  • Korea Meteorological Administration (KMA) has operationally produced Atmospheric Motion Vector (AMV) from the consecutive MTSAT-1R satellite image dataset. Comparing with radiosonde data, our current AMV scheme shows more than 10 m/s RMSE. Therefore we need to improve continuously its accuracy. Many AMV producers have stated that the bad performance of the Height Assignment (HA) algorithm is the main reason of degrading the accuracy of AMV. The uncertainties in AMV HA can occur in the algorithm itself, used NWP profiles, and the performance of Radiative Transfer Model (RTM) etc. This study introduces currently operated AMV HA schemes and the impacts of NWP profile data and RTM that these schemes use were investigated. Finally we analyzed the relationship between vectors by vector tracking and heights assigned to each vector by using collocated wind profile dataset with radiosonde data. This study is a preliminary work to improve the accuracy of AMV by removing or decreasing the uncertainties in AMV estimation.

  • PDF

Real Time Transporter Locating System for Shipyard through GNSS and IMU Sensor (GNSS와 IMU센서를 활용한 실시간 트랜스포터 위치추적 시스템)

  • Mun, SeungHwan;An, JongWoo;Lee, Jangmyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.439-446
    • /
    • 2019
  • A real time transporter locating system for shipyard has been implemented through the GNSS and IMU sensor. There are a lot of block movements by transporters at the shipyard, which need to be controlled and monitored for conforming to the shipbuilding process. For the precise and safe transporter motion at the yard, a locating system has been developed by using the GNSS and IMU sensors for the transporter. There are several obstacles of the GPS signals for locating the transporter at the yard, such as, buildings and metal structures. To overcome the weakness of the GPS signal transmission, the IMU data have been properly integrated together. The performance of the proposed real time block locating system has been verified through the real experiments with transporters carrying blocks at a shipyard.

Cancelling Magnetic Features on the Sun

  • Park, So-Young;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • A cancelling magnetic feature (CMF) is believed to be a result of magnetic reconnection in the low atmosphere of the Sun. In this work, we investigate the physical properties of CMFs, focusing on the rates of flux cancellation in CMFs and the dynamics of chromospheric phenomena coupled with CMFs. First, we have determined the specific rates of flux cancellation using the magnetograms taken by the Solar Optical Telescope (SOT) aboard the Hinode satellite. The specific rates determined with the SOT turned out to be systematically higher than those based on the data taken by the Michelson Doppler Imager (MDI) aborad the SOHO. Second, we analyzed transient Ca II brightenings associated with small-scale CMFs using the SOT/Hinode. We found that in most Ca II brightenings related to CMFs, and the Ca II intensity peaks after magnetic flux cancellation proceeds. Moreover, brightenings tend to appear as pairs of bright points of similar size and similar brightness overlying magnetic bipoles. To further study the brightening and dynamics of chromospherie features associated with CMFs, we have analyzed Fast Imaging Solar Spectrograph (FISS) data. From this data the Doppler motion of chromospheric features above a CMF changed from redshift to blueshift. The duration of such dynamics is very short being less than 2 minutes. These results are unexpected one and can not be explained by any pre-existing pictures of CMFs.

  • PDF

Development of Cloud Motion Vector for Rainfall Forecasting System using Geostationary Satellite Data (홍수 예·경보를 위한 위성 구름이동벡터 개발)

  • Park, Kyung Won;Shin, Yong Chul;Yoon, Sun Kwon;Jang, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.597-597
    • /
    • 2015
  • 기후변화에 따른 홍수 위험도 증가와 태풍 및 집중호우의 증가는 도시지역의 홍수로 인한 피해가 커지고 있다. 실제로 최근 10년간 홍수로 인한 재산피해 및 인명피해는 해마다 늘고 있다. 이러한 홍수피해를 최소화 할 수 있는 도시지역 초단기 강우 예보 시스템 개발은 필수적이다. 그동안 기상레이더를 이용한 강우예측 모형은 국내외적으로 많이 개발이 되어 있지만, 위성을 이용한 단기간 강우예보모형은 많이 부족한 실정이다. 최근 국내 최초 기상위성의 발사로 위성을 이용한 강수관측 및 초단기 예보가 가능하게 되었다. 이러한 초단기 강우 예보 시스템의 기본예측모형인 구름이동벡터를 개발하기 위해서 본 연구에서 COMS 위성자료를 이용하였다. COMS 위성은 2011년 4월에 발사되어 현재 운영 중에 있다. COMS 위성 자료는 현재 일본 정지궤도 위성 MTSAT 위성자료와 달리 한반도 영역을 대상으로 적외채널 자료들을 8-15분 간격으로 수집 가능하여 집중호우 예보에 매우 유리하다. COMS 위성의 연속되는 위성 구름의 교차상관을 통해서 이동벡터를 산출하여 예측 모형을 산출하였다. 교차상관 기법은 연속되는 구름 자료에 대해서 두 윈도우 사의 상관계수의 최대치를 찾아냄으로써 구름의 이동방향과 이동속도를 산출하는 방법이다. 기 개발된 예측모형을 이용하여 한반도 지역의 이동벡터를 산출하였으며, 본 연구에서 산출된 구름이동벡터는 도시지역의 갑자기 발생하는 집중호우나 태풍의 초단기 예측의 기본 모형으로 탑재될 것이다.

  • PDF

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

Satellite Image Analysis of Convective Cell in the Chuseok Heavy Rain of 21 September 2010 (2010년 9월 21일 추석 호우와 관련된 대류 세포의 위성 영상 분석)

  • Kwon, Tae-Yong;Lee, Jeong-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.423-441
    • /
    • 2013
  • On 21 September 2010, one of Chuseok holidays in Korea, localized heavy rainfalls occurred over the midwestern region of the Korean peninsula. In this study MTSAT-2 infrared and water vapor channel imagery are examined to find out some features which are obvious in each stage of the life cycle of convective cell for this heavy rain event. Also the kinematic and thermodynamic features probably associated with them are investigated. The first clouds related with the Chuseok heavy rain are detected as low-level multicell cloud (brightness temperature: $-15{\sim}0^{\circ}C$) in the middle of the Yellow sea at 1630~1900 UTC on 20 Sept., which are probably associated with the convergence at 1000 hPa. Convective cells are initiated in the vicinity of Shantung peninsula at 1933 UTC 20, which have developed around the edge of the dark region in water vapor images. At two times of 0033 and 0433 UTC 21 the merging of two convective cells happens near midwestern coast of the peninsula and then they have developed rapidly. From 0430 to 1000 UTC 21, key features of convective cell include repeated formation of secondary cell, slow horizontal cloud motion, persistence of lower brightness temperature ($-75{\sim}-65^{\circ}C$), and relatively small cloud size (${\leq}-50^{\circ}C$) of about $30,000km^2$. Radar analysis showed that this heavy rain is featured by a narrow line-shaped rainband with locally heavy rainrate (${\geq}50$ mm/hr), which is located in the south-western edge of the convective cell. However there are no distinct features in the associated synoptic-scale dynamic forcing. After 1000 UTC 21 the convective cell grows up quickly in cloud size and then is dissipated. These satellite features may be employed for very short range forecast and nowcasting of mesoscale heavy rain system.

Characteristics of Ocean Scanning Multi-spectral Imager(OSMI) (Ocean Scanning Multi-spectral Imager (OSMI) 특성)

  • Young Min Cho;Sang-Soon Yong;Sun Hee Woo;Sang-Gyu Lee;Kyoung-Hwan Oh;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.223-231
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of less than 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-orbit image data storage. The instrument also performs sun calibration and dark calibration for on-orbit instalment calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a Charge Coupled Device (CCD) Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412, 443, 490, 510, 555, 670, 765 and 865 nm during ground characterization of instalment. In addition to the ground calibration, the on-orbit calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

Development of Multi-Camera based Mobile Mapping System for HD Map Production (정밀지도 구축을 위한 다중카메라기반 모바일매핑시스템 개발)

  • Hong, Ju Seok;Shin, Jin Soo;Shin, Dae Man
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.587-598
    • /
    • 2021
  • This study aims to develop a multi-camera based MMS (Mobile Mapping System) technology for building a HD (High Definition) map for autonomous driving and for quick update. To replace expensive lidar sensors and reduce long processing times, we intend to develop a low-cost and efficient MMS by applying multiple cameras and real-time data pre-processing. To this end, multi-camera storage technology development, multi-camera time synchronization technology development, and MMS prototype development were performed. We developed a storage module for real-time JPG compression of high-speed images acquired from multiple cameras, and developed an event signal and GNSS (Global Navigation Satellite System) time server-based synchronization method to record the exposure time multiple images taken in real time. And based on the requirements of each sector, MMS was designed and prototypes were produced. Finally, to verify the performance of the manufactured multi-camera-based MMS, data were acquired from an actual 1,000 km road and quantitative evaluation was performed. As a result of the evaluation, the time synchronization performance was less than 1/1000 second, and the position accuracy of the point cloud obtained through SFM (Structure from Motion) image processing was around 5 cm. Through the evaluation results, it was found that the multi-camera based MMS technology developed in this study showed the performance that satisfies the criteria for building a HD map.

Analysis of Snowfall Development Mechanism over the Korean Peninsula due to Polar Low (극저기압에 의한 한반도 강설 발달기구 분석)

  • Kim, Jinyeon;Min, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.645-661
    • /
    • 2013
  • The synoptic, thermodynamic, and dynamic characteristics of a heavy snowfall event that occurred in Seoul metropolitan area on 27 to 28 December 2010 was investigated. During this period there was a distinctive case that was identified as a polar low. We analyzed surface and upper level weather charts, snowfall amount, sea surface temperature, satellite imagery, sounding, and the National Center for Environmental Prediction global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The polar low developed in an area where there was strong baroclinicity in the lower level aided by strong conditional instability due to 925 hPa warm air advection and 700 hPa cold air advection. The development mechanism of polar low is due, in part, to the tropopause folding, which advected stratospheric air increasing potential vorticity in mid-level and inducing cyclonic vorticity and convergence in low-level. Eventually clouds developed and there were snowfall total of 10 cm in Seoul metropolitan area and as much as 20 cm in southern parts of Korea. During the snowfall development, there was a $-45^{\circ}C$ cold core at 500 hPa and shortwave maintained $3-5^{\circ}$ separation with surface trough, which favored the development of polar low located in the warm sector and cyclonic advection area. The height of the dynamical tropopause lowered to 700 hPa during the peak development and increase in potential vorticity allowed strong vertical motion to occur. Overall, there was a close relationship between the development of snowfall and tropopause undulation. The heaviest snowfall occurred east of the tropopause folding where strong cyclonic vorticity, vertical motion, and moisture advection all coincided while the polar low was passing through the Korean peninsula.