DOI QR코드

DOI QR Code

Analysis of Snowfall Development Mechanism over the Korean Peninsula due to Polar Low

극저기압에 의한 한반도 강설 발달기구 분석

  • Kim, Jinyeon (National Typhoon Center, Korea Meteorological Administration) ;
  • Min, Ki-Hong (Center for Atmospheric Remote Sensing, Kyungpook National University)
  • 김진연 (기상청 국가태풍센터) ;
  • 민기홍 (경북대학교 대기원격탐사연구소)
  • Received : 2013.10.08
  • Accepted : 2013.11.13
  • Published : 2013.12.31

Abstract

The synoptic, thermodynamic, and dynamic characteristics of a heavy snowfall event that occurred in Seoul metropolitan area on 27 to 28 December 2010 was investigated. During this period there was a distinctive case that was identified as a polar low. We analyzed surface and upper level weather charts, snowfall amount, sea surface temperature, satellite imagery, sounding, and the National Center for Environmental Prediction global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The polar low developed in an area where there was strong baroclinicity in the lower level aided by strong conditional instability due to 925 hPa warm air advection and 700 hPa cold air advection. The development mechanism of polar low is due, in part, to the tropopause folding, which advected stratospheric air increasing potential vorticity in mid-level and inducing cyclonic vorticity and convergence in low-level. Eventually clouds developed and there were snowfall total of 10 cm in Seoul metropolitan area and as much as 20 cm in southern parts of Korea. During the snowfall development, there was a $-45^{\circ}C$ cold core at 500 hPa and shortwave maintained $3-5^{\circ}$ separation with surface trough, which favored the development of polar low located in the warm sector and cyclonic advection area. The height of the dynamical tropopause lowered to 700 hPa during the peak development and increase in potential vorticity allowed strong vertical motion to occur. Overall, there was a close relationship between the development of snowfall and tropopause undulation. The heaviest snowfall occurred east of the tropopause folding where strong cyclonic vorticity, vertical motion, and moisture advection all coincided while the polar low was passing through the Korean peninsula.

본 연구에서는 2010년 12월 27일부터 28일까지 서울을 포함한 수도권 지역에 많은 강설을 일으킨 사례의 종관적, 열역학적 및 역학적 특징을 조사하였다. 이 사례는 극저기압으로 분류할 수 있는 특성을 지녔다. 분석에 사용된 자료는 지상 및 상층 일기도, 강설량, 해수면온도, 위성사진, 연직프로파일 및 미국 국립환경예측센터의 전구 $1^{\circ}{\times}1^{\circ}$ 재분석자료 등이다. 극저기압은 대기 하층에서 양의 경압성이 강하게 나타나며 925 hPa에 온난이류가, 700 hPa에 한랭이류가 있어 조건부 불안정층이 뚜렷하게 보이는 곳에서 형성되는 것으로 사료된다. 극저기압의 발달기구는 대류권계면 접힘에 의한 성층권 공기의 유입과 그에 따른 위치 소용돌이도의 증가로 하층에 수렴과 저기압성 순환의 유발에 기인한다. 이는 눈구름의 발달로 이어져 서울 지역에는 10 cm, 남부지방에는 최고 20 cm까지 적설을 보였다. 강설의 발달기간동안 상층 500 hPa에는 $-45^{\circ}C$의 한랭핵이 존재하였고 단파골과 지상 기압골간의 위상차도 $3-5^{\circ}$를 이루어 극저기압이 온난역의 저기압성 소용돌이도 이류 지역에서 발달할 수 있었다. 발달의 최성기에는 역학적 대류권계면이 700 hpa까지 하강하였고 위치소용돌이도의 증가로 상승기류도 강화되었다. 전반적으로 강설의 발생과 대류권계면의 파상운동과는 깊은 관련을 보였다. 극저기압이 한반도를 통과하는 동안 대류권계면이 하강하는 지점의 동쪽에 소용돌이도와 상승기류가 강화되었고 동시에 많은 습기가 이류되는 곳에서 강설량도 최대로 나타났다.

Keywords

References

  1. Bell, G.D. and Bosart, L.F., 1993, A case study diagnosis of the formation of an upper-level cutoff cyclonic circulation over the eastern United States. Monthly Weather Review, 121, 1635-1655. https://doi.org/10.1175/1520-0493(1993)121<1635:ACSDOT>2.0.CO;2
  2. Bithell, M., Gray, L.J., and Cox, B.D., 1999, A threedimensional view of the evolution of midlatitude stratospheric intrusions, Journal of Atmospheric Science, 56, 673-688. https://doi.org/10.1175/1520-0469(1999)056<0673:ATDVOT>2.0.CO;2
  3. Bolton, D., 1980, The computation of equivalent potential temperature. Monthly Weather Review, 108, 1046-1053. https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
  4. Businger, S. and Baik, J.-J., 1991, An Arctic hurricane over the Bering. Monthly Weather Review, 119, 2293-2322. https://doi.org/10.1175/1520-0493(1991)119<2293:AAHOTB>2.0.CO;2
  5. Fu, G., Niino, H., Kimura, R., and Kato, T., 2004, A polar low over the Japan Sea on 21 January 1997. Part I: Observational analysis. Monthly Weather Review, 132, 1537-1551. https://doi.org/10.1175/1520-0493(2004)132<1537:APLOTJ>2.0.CO;2
  6. Gronas, S., and Kvamstø, N.G., 1995, Numerical simulations of the synoptic conditions and development of Arctic outbreak polar lows. Tellus A, 47, 797-814. https://doi.org/10.1034/j.1600-0870.1995.00121.x
  7. Hirschberg, P.A. and Fritsch, J.M., 1991, Tropopause undulations and the development of extratropical cyclones. Part I: Overview and observations from a cyclone event. Monthly Weather Review, 119, 496-517. https://doi.org/10.1175/1520-0493(1991)119<0496:TUATDO>2.0.CO;2
  8. Holton, J.R., 2004, An Introduction to Dynamic Meteorology, 4th ed. Elsevier Academic Press, Burlington, USA, 535 p.
  9. Hoskins, B.J., McIntyre, M.E., and Robertson, A.W., 1985, On the use and significance of isentropic pontential vorticity maps. Quarterly Journal of Royal Meteorological Society, 111, 877-946. https://doi.org/10.1002/qj.49711147002
  10. Jeong, Y.-K., 1999, Synoptic environment associated with the heavy snowfall in the Southwestern Region of Korean Peninsula. Journal of Korean Earth Science Society, 20, 398-410.
  11. Jung, E.-S., 1999, Analysis of intrusion of stratospheric air by VHF radar and energy change in troposphere. Kyungpook National University, Daegu, Korea, 79 p.
  12. Kalnay, E., and coauthors, 1996, The NCEP/NCAR 40- year reanalysis project. Bulletin of American Meteorological Society, 77, 437-470. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  13. Kim, D.J., Kim, D.H., Chun, J.M., and Hong, K.D., 2010, A study of mesoscale heavy snowfall development mechanism in Jeju Island. Proceedings of Korean Meteorological Society, Busan, Korea, 206-207.
  14. Kim, Y.M., Youn, Y.-H., and Chung, H.-S., 2004, Potential vorticity thinking as an aid to understanding mid latitude weather systems. Journal of Korean Meteorological Society, 40, 633-647.
  15. KMA, 2011, Analysis of winter heavy snowfall cases using satellite imagery (Analysis of heavy snowfall characteristics based on conceptual models). KMA National Satellite Center, Technical note 2011-2, 55 p.
  16. Kristjansson, J.E., and coauthors, 2011, The Norwegian IPY-THORPEX: Polar lows and Arctic fronts during the 2008 Andøya campaign. Bulletin of the American Meteorological Society, 92, 1443-1466. https://doi.org/10.1175/2011BAMS2901.1
  17. Kurz, M., 1994, The role of diagnostic tools in modern weather forecasting. Meteorology and Applications, 1, 45-67.
  18. Kwak, B.C. and Yoon, I.H., 2000, Synoptic analysis on snowstorm occurred along the East Coast of the Korean Peninsula during 5-7 January, 1997. Journal of Korean Earth Science Society, 21, 258-275.
  19. Lee, H.-R., 2007, Development mechanism of a wintertime explosive cyclone: A case study. Kyungpook National University, Daegu, Korea, 155 p.
  20. Lee, H.-R., Kim, K.-E., Yoo, J.-M., and W.-J. Lee, 2002, Tropopause undulation as sociated with explosive development of a cyclone. Journal of Korean Meteorological Society, 38, 431-463.
  21. Lee, H.-R., Kim, K.-E., Yoo, J.-M., and Min, K.-D. 2001, A study on a severe winter weather occurred in the Korean Peninsula by tropopause undulation. Journal of Korean Meteorological Society, 37, 195-224.
  22. Lee, H.Y., Ko, H.Y., Kim, K.-E., and Yoon, I.H., 2010, An analysis of characteristics of heavy rainfall events over Yeongdong Region associated with tropopause folding. Journal of Korean Earth Science Society, 31, 354-369. https://doi.org/10.5467/JKESS.2010.31.4.354
  23. Lee, T.-Y. and Park, Y.-Y., 1998, A numerical modeling study of mesoscale cyclongenesis to the east of the Korean Peninsula. Monthly Weather Review, 126, 2305-2329. https://doi.org/10.1175/1520-0493(1998)126<2305:ANMSOM>2.0.CO;2
  24. Martin, J.E., 2005, Mid-latitude Atmospheric Dynamics - A First Course. Wiley, West Sussex, U.K., 324 p.
  25. Park, J.-H., Kim, K.-E., and Heo, B.-H., 2009, Comparison of development mechanisms of two heavy snowfall events occurred in Yeongnam and Yeongdong Regions of the Korean Peninsula. Journal of Korean Meteorological Society, 19, 9-36.
  26. Park, S.-G. and Lee, T.-Y., 2005, A case study of mesoscale cyclone development in the East Sea during winter. Proceedings of Korean Meteorological Society, Daegu, Korea, 34-35.
  27. Rasmussen, E., 1979, The polar low as an extratropical CISK disturbance. Quarterly Journal of Royal Meteorological Society, 105, 531-549. https://doi.org/10.1002/qj.49710544504
  28. Reed, R.J., 1979, Cyclogenesis in polar air streams. Monthly Weather Review, 107, 38-52. https://doi.org/10.1175/1520-0493(1979)107<0038:CIPAS>2.0.CO;2
  29. Reed, R.J. and Duncan, C.N., 1987, Baroclinic instability as a mechanism for the serial development of polar lows: a case study. Tellus 39A, 376-85. https://doi.org/10.1111/j.1600-0870.1987.tb00314.x
  30. Reed, R.J. and Sanders, F., 1953, An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. Journal of Meteorology, 10, 338-349. https://doi.org/10.1175/1520-0469(1953)010<0338:AIOTDO>2.0.CO;2
  31. Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., and Schlax,, M.G., 2007, Daily highresolution- blended analyses for sea surface temperature. Journal of Climate, 20, 5473-5496. https://doi.org/10.1175/2007JCLI1824.1
  32. Uccellini, L.W., Keyser, D., Brill, K.F., and Walsh, C.H., 1985, The president's day cyclone of 18-19 February 1979, influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Monthly Weather Review, 113, 941-961. https://doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2
  33. WMO (World Meteorological Organization), 1986, Atmospheric Ozone 1985: Global Ozone Research and Monitoring Report. Rep. No. 16, WMO, Geneva, Switzerland, 392 p.
  34. WMO (World Meteorological Organization), 1992, International Meteorological Vocabulary. Geneva, Switzerland, 784 p.
  35. Yanase, W., Fu, G., Niino, H., and Kato, T., 2004, A polar Low over the Japan Sea on 21 January 1997. Part 2: A Numerical Study. Monthly Weather Review, 132, 1552-1574. https://doi.org/10.1175/1520-0493(2004)132<1552:APLOTJ>2.0.CO;2