• Title/Summary/Keyword: sap flow

Search Result 48, Processing Time 0.034 seconds

Measurement of Mass Flow of Water in the Stem of Musk Melon by Sap Flow Gauge (열목지 경유센서에 의한 멜론 경유양의 측정)

  • 강곡명;양원모
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.268-274
    • /
    • 1998
  • The mass flow of water in the stem of melon measured by Sap Flow Gauge was compared with the actual flow calculated by the difference between supply and drainage nutrient water to investigate the possibility and accuracy of estimation of melon's transpiration in rockwool culture. The Sap Flow Gauge which was made with copper-constantan theromocouple and nichrome fiber by our research team, was attached to the 3rd node of melon. The outdoor temperature, room temperature, solar radiation and relative humidity were continually measured. The amount of supply and drainage nutrient water were simultaneously measured for calculation of practical consumption of nutrient water to compare with mass flow of sap. The measuring errors of Sap Flow Gauge were 0.3 to 31.8%, which were small at solar radiation of 20MJ.m$^{2}$.d$^{-1}$ . The mass flow of water was lower for the measured value by Sap Flow Gauge than the actual value at higher solar intensity, however it was higher at lower solar intensity The variation of error rate of each Sap Flow Gauge was 0.1 to 13.0%. The measuring error with Sap Flow Gauge was negatively related with solar intensity and temperature. Therefore, to measure more exactly the mass flow of sap for estimation of melon's transpiration, the compensation factor must be calculated.

  • PDF

Large scale flood inundation of Cambodia, using Caesar lisflood

  • Sou, Senrong;Kim, Joo-Cheol;Lee, Hyunsoek;Ly, Sarann;Lee, Giha;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.211-211
    • /
    • 2015
  • Mekong River is the world's $10^{th}$ longest river and runs through China's Yunnan province, Burma, Thailand, Laos, Cambodia and Vietnam. And Tonle Sap Lake, the largest fresh water body in Southeast Asia and the heart of Mekong River system, covers an area $2,500-3,000Km^2$ in dry season and $10,000-16,000Km^2$ in wet season. As previously noted, the water within Sap river flows from the Mekong River to Tonle Sap Lake in flood season (between June and October) and backward to Mekong River in dry season. Recently the flow regime of Sap River might be significantly affected by the development of large dams in upstream region of Mekong River. This paper aims at basic study about the large scale flood inundation of Cambodia using by CAESAR-Lisflood. CAESAR-Lisflood is a geomorphologic / Landscape evolution model that combines the Lisflood-FP 2d hydrodynamic flow model (Bates et al, 2010) with the CAESAR geomorphic model to simulate flow hydrograph and erosion/deposition in river catchments and reaches over time scales from hours to 1000's of years. This model is based on the simplified full Saint-Venant Equation so that it can simulate the interacted flow of between Mekong River and Tonle Sap Lake especially focusing on the flow direction change of Sap River by season.

  • PDF

Factors Affecting on Sap Flows of Birch Trees, Betula platyphylla as a Healthy Beverages (건강음료로서의 자작나무 수액의 유출량에 미치는 영향인자)

  • Cho, Nam-Seok;Kim, Hong-Eun;Min, Du-Sik;Park, Cheol-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.93-99
    • /
    • 1998
  • Lately public interest in tree saps of maple and birch trees stimulated to increase demands for sap drink as a natural medical beverage. In order to understand factors affecting tree sap flows, birch species, particularly Betula platyphylla in Mt.Sobaek area, were monitored for daily sap flows according to factors, such as DBH, tapping hole sizes and direction of hole drilling on the trunks. The chemical constituents of saps were also analyzed. The sap flow initiated from the end of March and finished at the end of April. The flow maxima appeared from April 14th to April 26th. Total amounts of the sap flow obtained from birch tree were over 1,800 ml per day per one tree. Sap flows were increased with increasing DBH and tree age. Six milimeter drilled hole resulted in the highest sap flows. Sap flows increased with increases of diameter and height of the trees. Hole drilling to downward side(south-facing) of tree produced almost doubled sap flows than that of upward one(north-facing), while rightside drilling produced same amounts of saps to that of leftside one. Six mm drilling gave the best results not only in maximum flows but also effective hole occluding rates. The saps have in the range of 4.5 to 5.6 pH and l.0 - 2.0% of saccharinity. Sucrose, glucose, fructose and high mineral contents were found in the saps of birch tree. The tree saps could be utilized not only medicinal drink, but also one of the healthy beverages.

  • PDF

Impact of the Mekong River Flow Alteration on the Tonle Sap Lake in Cambodia

  • Lee, Giha;Kim, Joocheol;Jung, Kwansue;Lee, Hyunseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.231-231
    • /
    • 2015
  • Rapid development in the upper reaches of the Mekong River, in the form of construction of large hydropower dams and reservoirs, large irrigation schemes, and rapid urban development, is putting water resources under stress. Many scientific reports have pointed out that cascade dams along the Mekong River lead to serious problems: not only hydrologically but also a decline of agricultural productivity due to a decrease of sediment supply in the Mekong Delta and a change of fish amount due to drastic change of the water environment. Cambodia and Vietnam, located in the lowest Mekong basin, are gravely affected by radical changes of hydrologic regime due to Mekong River developments. In particular, the Tonle Sap Lake in Cambodia is very sensitive to the flood cycle and flow variation of the Mekong River as well as inflow water quality from the Mekong River. More than 50% of Cambodian GDP depends on the primary industries such as agriculture, fishing, and forestry, and the Tonle Sap Lake plays an important role to support the national economy in Cambodia. In addition, Cambodian people usually take nourishment from the fish of Tonle Sap Lake. This research aims to assess the impacts of the Mekong river flow alternation on the hydrologic regime of the Mekong River - Tonle Sap Lake. We carried out rainfall-runoff-inundation simulation using CAESER-LISFLOOD for integrated water resource management in the Tonle Sap Basin and then analyze flood inundation variation of the Tonle Sap Lake due to the scenarios. Furthermore, the simulated inundation maps were compared to MODIS satellite images for model verification and hydrologic prediction.

  • PDF

Effect of Cyclic Wetting-drying on Self-healing of Cementitious Materials Containing Superabsorbent Polymers (습윤/건조 반복 작용이 고흡수율 폴리머를 함유한 시멘트계 재료의 자기치유에 미치는 영향)

  • Hong, Geuntae;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • In this study, the effect of cyclic wetting-drying on the self-healing of cementitious materials containing superabsorbent polymers (SAPs) were experimentally evaluated. In each cycle, cracked cement paste specimens containing various SAP dosages were exposed to wet conditions for 1 h, during which the capillary water absorption tests and water flow tests were conducted, and then exposed to dry conditions for 47 h. The capillary water absorption test results showed that the sorptivity values of the specimen without SAPs, SAP 0.5%, SAP 1.0%, and SAP 1.5% specimens were decreased by approximately 22.9%, 36.8%, 42.8%, and 46.3%, respectively, after 8 cycles. In addition, the water flow test results showed that the amount of water runoff through the cracks of all cracked specimens gradually decreased over wet/dry cycles, especially the reduction ratio of the amount of water runoff increased with increasing SAP dosage. Furthermore, the swelling behavior of SAPs in cracks by in gress water was con firmed via X-ray computed tomography (CT) analysis. These results indicate that the effective crack width can be reduced as SAPs absorb water and swell, while the water absorbed in SAPs can be released to crack surfaces under dry conditions, further promoting healing product formation. This study demon strates that the in corporation of SAPs can in crease the water tightness of cracks, thereby improving the self-healing efficiency of cementitious materials.

Xylem Sap Flow Affected by Short-term Variation of Soil Moisture Regimes at Higher Growth Period in 'Fuji'/M.9 Apple Trees with Different Fruit Loads (착과량 수준 및 생육성기 토양수분 함량 변화에 따른 '후지'/M.9 품종의 수액이동 특성)

  • Park, Jeong-Gwan;Kim, Seung-Heui;Lee, In-Bok;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.164-169
    • /
    • 2006
  • This study was conducted for 10 days from 17 July to 26 July in 2005 to measure the amount of xylem sap flow under short-term variation of soil moisture regimes at -20 kPa, -50 kPa and -80 kPa in eight-year-old 'Fuji'/M.9 apple trees with different fruit loads. Fruit load was adjusted as three different treatments with standard (100%), 1/2 times (50%) and 2 times (200%) on the basis of optimum fruiting number per tree as the standard fruit load of Fuji cultivar. Trees with standard fruit load during the experimental period showed higher xylem sap flow at -50 kPa of soil moisture regimes than those of trees with 1/2 times and 2 times fruit load. Trees with 1/2 times and 2 times fruit load had similar patterns of the diurnal changes of xylem sap flow, vapor pressure deficit (VPD), and maximum evapotranspiration (ETm). However, trees with 2 times fruit load at -50 kPa and -80 kPa of soil moisture regimes produced lower amount of xylem sap flow than ETm. Trees with standard fruit load produced $1.06{\sim}3.93$ L/tree more amount of xylem sap flow than ETm at all soil moisture regimes. But xylem sap flow of tees with 2 times fruit load had 21% lower at -50 kPa and $31{\sim}36%$ lower at -20 kPa and -80 kPa of soil moisture regimes, respectively than that of trees with standard fruit load. Shoot growth and leaf area were significantly the highest in trees with standard fruit load while those of trees with 2 times fruit load recorded significantly lowest. Leaf water potential of trees with standard fruit load was lower than that of trees with 1/2 times and 2 times fruit load. It indicated that tees with standard fruit load had higher water use for transpiration than other treatments and tees with 2 times fruit load received more stress for the transpiration process under low soil moisture regimes. Consequently, 'Fuji'/M.9 apple trees, the fruit load and soil moisture should be maintained optimum to increase xylem sap flow and transpiration during higher growth period.

Dry Season Evaporation From Pine Forest Stand In The Middle Mountains Of Nepal

  • Gnawali, Kapil;Jun, KyungSoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.330-330
    • /
    • 2016
  • The quantification of dry season evaporation in regions, where the magnitude of dry season flows is key to the regional water supply, is essential for good water management. Also, tree transpiration has a significant role in the water balance of a catchment whenever it is tree populated, especially in water limited environments. Such is the case in the Middle Mountains of Nepal where dry season flows play a significant role in downstream water provisioning and their proper functioning is key to the welfare of millions of people. This research seeks to study the transpiration of a pine forest stand in the Jikhu Khola Watershed in the Middle Mountains of Nepal. To the author's knowledge, no single study has been made so far to estimate the dry season evaporation from the planted forest stand in the Middle Mountains of Nepal. The study was carried out in planted pine forest embedded within the Jikhu Khola Catchment. Field campaigns of sap flow measurements were carried out from September, 2010 to February, 2011 in the selected plot of 15*15m dimension, to characterize dry season evaporation. This was done by measuring sap fluxes and sapwood areas over the six trees of different Diameter at Breast Height (DBH) classes. The sap flux was assessed using Granier's thermal dissipation probe (TDP) technique while sapwood area was determined using several incremental core(s) taken with a Pressler borer and immediately dyeing with methyl orange for estimating the actual depth of sapwood area. Transpiration of the plot was estimated by considering the contribution of each tree class. For this purpose, sap flux density, sapwood area and the proportion of total canopy area were determined for each tree class of the selected plot. From these data, hourly and diurnal transpiration rates for the plot were calculated for experimental period. Finally, Cienciala model was parameterized using the data recorded by the ADAS and other terrain data collected in the field. The calibrated model allowed the extrapolation of Sap flux density (v) over a six month period, from September 2010 to February 2011. The model given sap flux density was validated with the measured sap flux density from Grainier method.

  • PDF

Multi-sensor monitoring for temperature stress evaluation of broccoli (Brassica oleracea var. italica) (브로콜리(Brassica oleracea var. italica)의 온도 스트레스 평가를 위한 다중 센서 모니터링)

  • Cha, Seung-Ju;Park, Hyun Jun;Lee, Joo-Kyung;Kwon, Seon-Ju;Jee, Hyo-Kyung;Baek, Hyun;Kim, Han-Na;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.347-355
    • /
    • 2020
  • Several sensors have been developed for soil and plants to assess plant stress due to climate change. Therefore, the objective of the study is to nondestructively evaluate temperature stress on plant by monitoring climatic and soil conditions and plant responses using various sensors. Plant responses were monitored by electrical conductivity in plant stem and sap flow rate. Electrical conductivity in plant stem reflects the physiological activity of plants including water and ion transport. Fully grown Brassica oleracea var. italica was exposed to 20/15 ℃ (day/night) with 16 h photoperiods as a control, low temperature 15/10 ℃, and high temperature 35/30 ℃ while climatic, soil, and plant conditions were monitored. Electrical conductivity in plant stem and sap flow rate increased during the day and decreased at night. Under low temperature stress, electrical conductivity in plant stem of Brassica oleracea var. italica was lower than control while under high temperature stress, it was higher than control indicating that water and ion transport was affected. However, chlorophyll a and b increased in leaves subjected to low temperature stress and there was no significant difference between high temperature stressed leaves and control. Free proline contents in the leaves did not increase under low temperature stress, but increased under high temperature stress. Proline synthesis in plant is a defense mechanism under environmental stress. Therefore, Brassica oleracea var. Italica appears to be more susceptible to high temperature stress than low temperature.

Sap Temperature Distribution of the Xylem and Leaf Water Status of Apple Trees in Relation to Soil Oxygen Diffusion Rates

  • Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.170-175
    • /
    • 2000
  • A pot-lysimeter experiment was conducted with 3-year-old 'Tsugaru' apple (Malus domestica Borkh) trees to examine the changes in oxygen diffusion rate (ODR) with lateral flow velocity of water through soil. The influence of lateral water flow velocity on water relations and elemental content in leaf, and sap temperature distribution patterns of the xylem of trees were also determined. Trees were grown under four soil water regimes: (1) fast laterally flowing (FWT, $2.50{\times}10^{-4}cm\;s^{-1}$), (2) slow laterally flowing (SWT, $0.25{\times}10^{-4}cm\;s^{-1}$), and (3) stagnant water table (WLT) at 60-cm, and (4) drip-irrigation at -40 kPa of soil matric potential as a control. The rate of $O_2$ diffusion converged near $2{\times}10^{-3}g\;m^{-2}\;min^{-1}$ for FWT and control soils, but decreased below $1{\times}10^{-3}g\;m^{-2}\;min^{-1}$ 40 days after treatment (DAT) for WLT soils. For SWT soils, however, the ODR at 15 cm below the soil surface was similar to that of control, but at 45 cm below the soil surface, ODR was similar to that of the WLT treatment. Leaf water potential of FWT and SWT plants was similar to that of control plants, but the values for SWT plants declined by 98 DAT. Leaf water potential of WLT plants decreased from -1.86 MPa (9 DAT) to -2.41 MPa (59 DAT) and finally down to -2.70 MPa. The sap temperature measured at 1100-hr was lowest at top and highest at bottom for FWT and control plants, but this pattern of SWT and WLT plants was disturbed from 29 DAT. However, for SWT plants, such thermal disturbance of sap temperature disappeared from 63 DAT.

  • PDF

A Study of Sap Movement in Mulberry (Morus species) Stem in Spring (뽕나무의 춘기 수액이동에 관한 연구)

  • Lee, Won-Ju;Min, Yeong-Sang;Choe, Yeong-Cheol
    • Journal of Sericultural and Entomological Science
    • /
    • v.32 no.2
    • /
    • pp.85-88
    • /
    • 1990
  • Sap flow in mulberry (Morus species) trees was observed for one month from mid-March in 1981, 1982 and 1990. The results were : 1. Sap flow at 20cm soil depth occurred on April 8, 1981 at 10.1$^{\circ}C$, on April 2, 1982 at 8.3$^{\circ}C$ and March 25, 1990 at 8.7$^{\circ}C$. The data showed a range of 1.8$^{\circ}C$ and 15 days. 2. Water content of the wood decreased with decreasing soil temperature under 8$^{\circ}C$, whereas water content of the cortex remained constant or increased. Water may move form wood to cortex when it was insufficient in cortex. 3. Sap flow at 20cm soil depth occurred when accumulated soil temperature after March 1 about 180$^{\circ}C$.

  • PDF