Sap Temperature Distribution of the Xylem and Leaf Water Status of Apple Trees in Relation to Soil Oxygen Diffusion Rates

  • Ro, Hee-Myong (Department of Horticultural Environment, National Horticultural Research Institute, RDA)
  • Received : 2000.03.14
  • Published : 2000.09.30

Abstract

A pot-lysimeter experiment was conducted with 3-year-old 'Tsugaru' apple (Malus domestica Borkh) trees to examine the changes in oxygen diffusion rate (ODR) with lateral flow velocity of water through soil. The influence of lateral water flow velocity on water relations and elemental content in leaf, and sap temperature distribution patterns of the xylem of trees were also determined. Trees were grown under four soil water regimes: (1) fast laterally flowing (FWT, $2.50{\times}10^{-4}cm\;s^{-1}$), (2) slow laterally flowing (SWT, $0.25{\times}10^{-4}cm\;s^{-1}$), and (3) stagnant water table (WLT) at 60-cm, and (4) drip-irrigation at -40 kPa of soil matric potential as a control. The rate of $O_2$ diffusion converged near $2{\times}10^{-3}g\;m^{-2}\;min^{-1}$ for FWT and control soils, but decreased below $1{\times}10^{-3}g\;m^{-2}\;min^{-1}$ 40 days after treatment (DAT) for WLT soils. For SWT soils, however, the ODR at 15 cm below the soil surface was similar to that of control, but at 45 cm below the soil surface, ODR was similar to that of the WLT treatment. Leaf water potential of FWT and SWT plants was similar to that of control plants, but the values for SWT plants declined by 98 DAT. Leaf water potential of WLT plants decreased from -1.86 MPa (9 DAT) to -2.41 MPa (59 DAT) and finally down to -2.70 MPa. The sap temperature measured at 1100-hr was lowest at top and highest at bottom for FWT and control plants, but this pattern of SWT and WLT plants was disturbed from 29 DAT. However, for SWT plants, such thermal disturbance of sap temperature disappeared from 63 DAT.

Keywords