DOI QR코드

DOI QR Code

Multi-sensor monitoring for temperature stress evaluation of broccoli (Brassica oleracea var. italica)

브로콜리(Brassica oleracea var. italica)의 온도 스트레스 평가를 위한 다중 센서 모니터링

  • Cha, Seung-Ju (Department of Agricultural Chemistry, Chungbuk University) ;
  • Park, Hyun Jun (Soil Research Institute, Prumbio Co. LTD) ;
  • Lee, Joo-Kyung (Department of Agricultural Chemistry, Chungbuk University) ;
  • Kwon, Seon-Ju (Department of Agricultural Chemistry, Chungbuk University) ;
  • Jee, Hyo-Kyung (Department of Agricultural Chemistry, Chungbuk University) ;
  • Baek, Hyun (Department of Agricultural Chemistry, Chungbuk University) ;
  • Kim, Han-Na (Department of Agricultural Chemistry, Chungbuk University) ;
  • Park, Jin Hee (Department of Agricultural Chemistry, Chungbuk University)
  • Received : 2020.09.10
  • Accepted : 2020.10.21
  • Published : 2020.12.31

Abstract

Several sensors have been developed for soil and plants to assess plant stress due to climate change. Therefore, the objective of the study is to nondestructively evaluate temperature stress on plant by monitoring climatic and soil conditions and plant responses using various sensors. Plant responses were monitored by electrical conductivity in plant stem and sap flow rate. Electrical conductivity in plant stem reflects the physiological activity of plants including water and ion transport. Fully grown Brassica oleracea var. italica was exposed to 20/15 ℃ (day/night) with 16 h photoperiods as a control, low temperature 15/10 ℃, and high temperature 35/30 ℃ while climatic, soil, and plant conditions were monitored. Electrical conductivity in plant stem and sap flow rate increased during the day and decreased at night. Under low temperature stress, electrical conductivity in plant stem of Brassica oleracea var. italica was lower than control while under high temperature stress, it was higher than control indicating that water and ion transport was affected. However, chlorophyll a and b increased in leaves subjected to low temperature stress and there was no significant difference between high temperature stressed leaves and control. Free proline contents in the leaves did not increase under low temperature stress, but increased under high temperature stress. Proline synthesis in plant is a defense mechanism under environmental stress. Therefore, Brassica oleracea var. Italica appears to be more susceptible to high temperature stress than low temperature.

기상이변으로 인한 식물 스트레스를 평가하기 위해 토양과 식물에 적용할 수 있는 여러 센서가 개발되었다. 따라서 본 연구의 목적은 식물의 온도 스트레스를 평가하기 위해 다양한 센서를 사용하여 기후 및 토양 상태와 식물 반응을 모니터링하는 것이다. 식물 반응을 평가하기 위한 식물 센서로 식물 줄기의 전기전도도, sap flow rate를 모니터링하였다. 식물 줄기의 전기전도도는 물과 이온 수송을 포함한 식물의 생리적 활성을 반영한다. 완전히 자란 Brassica oleracea var. italica를 온도 20/15 ℃ (낮/밤), 16시간 광주기로 하여 대조구로 설정하였으며 저온 15/10 ℃ 및 고온 35/30 ℃에 노출시키면서 토양 및 식물 상태를 모니터링하였다. 식물 줄기의 전기전도도, sap flow rate는 낮에는 증가하고 밤에는 감소하였다. 저온 스트레스 하에서 Brassica oleracea var. italica 줄기의 전기전도도는 대조구보다 낮았고, 고온 스트레스 하에서는 대조구보다 높아 물과 이온 수송이 온도에 의해 영향을 받았음을 나타낸다. 그러나 엽록소 a와 b 함량은 저온 스트레스를 받은 잎에서 증가했고 고온 스트레스를 받은 잎에서는 대조구와 차이가 없었다. 잎의 프롤린 함량은 저온 스트레스에서는 대조구와 차이가 없는 반면, 고온 스트레스에서는 증가했다. 프롤린 합성은 환경 스트레스 하에서 식물의 방어 메커니즘으로 작용한다. 따라서 Brassica oleracea var. Italica는 저온보다 고온 스트레스에 더 민감한 것으로 판단된다.

Keywords

References

  1. Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28: 1867-1876 https://doi.org/10.1007/s10529-006-9179-3
  2. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4): 1593-1608 https://doi.org/10.1093/jxb/err460
  3. Agrios GN (2005) Plant Pathology 5th Edition: Elsevier Academic Press. Burlington 79-103
  4. Abraham E, Hourton-Cabassa C, Erdei L, Szabados L (2010) Methods for determination of proline in plants. In Plant Stress Tolerance (pp. 317-331). Humana Press
  5. Ehret D, Lau A, Bittman S, Lin W, Shelford T (2001) Automated monitoring of greenhouse crops. agronomie, EDP Sciences, 21(4): 403-414
  6. Repo T (1988) Physical and physiological aspects of impedance measurements in plants. Silva Fennica, 22(3): 181-193 https://doi.org/10.14214/sf.a15508
  7. Park HJ, Park JH, Park K, Ahn TI, Son JE (2018) Nondestructive measurement of paprika (Capsicum annuum L.) internal electrical conductivity and its relation to environmental factors. Horticultural Science and Technology 36: 691-701 https://doi.org/10.7235/HORT.20180069
  8. Smith DM, Allen SJ (1996) Measurement of sap flow in plant stems. J Exp Bot 47(12): 1833-1844 https://doi.org/10.1093/jxb/47.12.1833
  9. Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany 41(7): 1053-1062 https://doi.org/10.1139/b63-088
  10. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207 https://doi.org/10.1007/BF00018060
  11. Xin X, Zhang W, Li Q (2018) Thermal methods for measuring the sap flow of common camellia. Forest Res Eng Int J 2(2): 87-94
  12. Repo T, Zhang MIN, Ryyppo A, Vapaavuori E, Sutinen S (1994) Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation. J Exp Bot 45(6): 823-833 https://doi.org/10.1093/jxb/45.6.823
  13. Wan X, Landhausser SM, Zwiazek JJ, Lieffers VJ (2004) Stomatal conductance and xylem sap properties of aspen (Populus tremuloides) in response to low soil temperature. Physiol Plant 122(1): 79-85 https://doi.org/10.1111/j.1399-3054.2004.00385.x
  14. Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology 117(3): 851-858 https://doi.org/10.1104/pp.117.3.851
  15. Markhart AH, Fiscus EL, Naylor AW, Kramer PJ (1979) Effect of temperature on water and ion transport in soybean and broccoli systems. Plant Physiology 64(1): 83-87 https://doi.org/10.1104/pp.64.1.83
  16. Chu T, Aspinall D, Paleg LG (1974) Stress metabolism. VI.* Temperature stress and the accumulation of proline in barley and radish. Funct Plant Biol 1(1): 87-97 https://doi.org/10.1071/pp9740087
  17. Benko B (1969) The content of some amino acids in young apple shoots in relation to frost resistance. Biologia Plantarum 11(5): 334 https://doi.org/10.1007/BF02921397
  18. Chu TM, Jusaitis M, Aspinall D, Paleg LG (1978) Accumulation of free proline at low temperatures. Physiol Plant 43(3): 254-260 https://doi.org/10.1111/j.1399-3054.1978.tb02573.x
  19. Lekas TM, MacDougall RG, MacLean DA, Thompson RG (1990) Seasonal trends and effects of temperature and rainfall on stem electrical capacitance of spruce and fir trees. Canadian Journal of Forest Research 20(7): 970-977 https://doi.org/10.1139/x90-130
  20. Zandalinas SI, Rivero RM, Martinez V, Gomez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC plant biology 16(1): 105 https://doi.org/10.1186/s12870-016-0791-7
  21. Todorov DT, Karanov EN, Smith AR, Hall MA (2003) Chlorophyllase activity and chlorophyll content in wild type and eti 5 mutant of Arabidopsis thaliana subjected to low and high temperatures. Biologia plantarum 46(4): 633-636 https://doi.org/10.1023/A:1024896418839

Cited by

  1. Monitoring of plant induced electrical signal of broccoli (Brassica oleracea var. italica) under changing light and CO2 conditions vol.64, pp.4, 2021, https://doi.org/10.3839/jabc.2021.047