• Title/Summary/Keyword: sandy loam

Search Result 625, Processing Time 0.038 seconds

A Case Study of Landfarming Design Procedures for Remediation of Oil-contaminated Site (유류오염지역 정화를 위한 토양경작법 설계 표준화방안)

  • Cho, Chang-Hwan;Park, Jeong-Gu;Park, Min-Gyu;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.659-666
    • /
    • 2014
  • The purpose of this study was to suggest a standard design procedure of landfarming for clean-up of oil-contaminated soils. The standard design procedure consisted of four main phases; soil characterization, determination of contaminated soil volume, determination of nutrient and microbial doses, and estimation of the total remedial period. This study selected standard design parameter values or ranges among various forms used in environmental engineer communities. Those were determination procedures for the contaminated soil volume, the initial contamination concentration and nutrient doses. The suggested standard design procedure were applied for a landfarm design for remediation of a real oil-contaminated site. Soil texture of the site was classified as sandy clay loam and sandy loam. Total nitrogen and total phosphorus were estimated to be 57.01 mg/kg and 83.40 mg/kg, respectively. Also the viable bacterial numbers was assessed to be $1.78{\times}10^4CFU/g$ dry soil. The amount of TPH contaminated soil was estimated to be $4,092m^3$. With the application of remedial factors, it was estimated that the contaminated soil could be treated through 9 batches with a duration of 315 days for a landfarming unit of $15m{\times}40m{\times}1m$. The amount of liquid microorganisms and fertilizers were recommended to be 4,025L and 4,641kg, respectively.

Physicochemical Properties of Topsoil Used for River Improvement and Non-Improvement Areas

  • Kim, Won-Tae;Cho, Yong-Hyeon;Yoon, Yong-Han;Kang, Hee-Kyoung;Park, Bong-Ju;Shin, Kyung-Jun;Eo, Yang-Joon;Yoon, Taek-Seong;Jang, Kwang-Eun;Kwak, Moo-Young;Song, Hong-Seon
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1295-1304
    • /
    • 2013
  • This study was carried out to evaluate the physicochemical properties and perform a feasibility analysis of planting material composed of topsoil from river improvement and non-improvement areas. The results showed that the physicochemical properties of topsoil from river improvement areas were on the average sandy loam~loamy sand in soil texture, 5.6~6.8 in pH, 0.01~0.06 dS/m in EC, 0.9~2.1% in OM, 0.02~0.12% in T-N, 8~14 $cmol^+/kg$ in CEC, 0.01~0.08 $cmol^+/kg$ in Ex. $K^+$, 2.55~11.11 $cmol^+/kg$ in Ex. $Ca^{2+}$, 0.34~2.06 $cmol^+/kg$ in Ex. $Mg^{2+}$, and 3~396 mg/kg in Av. $P_2O_5$. And non-improvement areas showed on average sandy clay loam~sand in soil texture, 5.7~6.7 in pH, 0.02~0.08 dS/m in EC, 0.9~4.4% in OM, 0.02~0.23% in T-N, 7~18 $cmol^+/kg$ in CEC, 0.01~0.08 $cmol^+/kg$ in Ex. $K^+$, 3.81~12.67 $cmol^+/kg$ in Ex. $Ca^{2+}$, 0.60~1.95 $cmol^+/kg$ in Ex. $Mg^{2+}$, and 3~171 mg/kg in Av. $P_2O_5$. Meanwhile, the results of an applied valuation of topsoil- based planting were as follows. Ex. $K^+$ levels were low grade in all survey areas. OM was low grade in 12 improvement areas and 11 non-improvement areas. Av. $P_2O_5$ levels were low grade in 10 improvement areas and 10 non-improvement areas. T-N was low grade in six improvement areas and four non-improvement areas. Ex. $Mg^{2+}$ levels were low grade in two improvement areas.

Effects of Soil Texture, Irrigation System, and Soil Ameliorators on the Cadmium Adsorption in Soil and Uptake in Rice Plant (토양의 카드뮴흡착과 수도체 카드뮴흡수에 미치는 토성, 물관리 및 개량제 효과)

  • Jung, Goo-Bok;Kim, Kyu-Sik;Lee, Jong-Sik;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.128-133
    • /
    • 2000
  • This study was conducted to investigate the adsorptive characteristics with cadmium in different levels of organic matter and lime in soil. And in order to identify the effect of soil ameliorators on cadmium uptake in rice plants, compost and lime were treated. Plants were grown at two soil textures(sandy loam and clay loam) with irrigation water containing $0.01\;mg\;L^{-1}$ of cadmium and treatments of two irrigation systems(intermittent irrigation and continuous submersion). The adsorption capacity of cadmium by soil was increased in proportion to initial concentration of solution, and it was higher at clay soil compared to loamy soil. The adsorption rate of cadmium by soil was increased with increasing the concentration of organic matter and lime in soil, highly increased at the both organic matter and lime treatment. Soil pH was negatively correlated with the cadmium contents of the both shoot and brown rice while Eh was positively correlated with those. In the harvest season, cadmium contents in the both leaves and brown rice were lower in the clay sail plots than sandy soil plots, and the continuous submersion plots were lower than intermittent irrigation plots. Cadmium uptake was highly reduced at the compost and lime mixture plot compared to other treatments among the continuous submersion plots. The cadmium content of shoot was positively correlated with that of brown rice in the harvest season.

  • PDF

Changes in Soil Properties Related to Soil Function due to Chemical Spills with Strong Acid and Base (강산 및 강염기 토양 유출에 따른 토양의 생태기능 관련 토양특성 변화)

  • Jeon, Inhyeong;Jung, Jae-Woong;Nam, Kyoungphile
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.193-199
    • /
    • 2017
  • In this study, changes of soil properties including soil texture, specific surface area, organic matter content, pH, cation exchange capacity and exchangeable cations content were investigated in response to strong acid or base accident. The properties changed significantly when the soil reacted with 10 M HCl or 1 M NaOH (i.e., when one gram of soil received 50 and 5 mmol of HCl or NaOH), respectively. When the soil reacted with 10 M HCl or 1 M NaOH solution, soil texture changed from sandy loam to loamy sand and specific surface areas decreased from $5.84m^2/g$ to 4.85 and $1.92m^2/g$, respectively. The soil organic matter content was reduced from 3.23% to 0.96 and 0.44%, and the soil pH changed from 5.05 to 2.35 and 10.65, respectively. The cation exchange capacity decreased from 10.27 cmol/kg to 4.52 and 5.60 cmol/kg, respectively. Especially, high concentrations of $Al^{3+}$ or $Na^+$ were observed in acidic or basic spills, respectively, which is likely to cause toxicity to terrestrial organisms. The results suggest that restoration of soil properties, as well as soil remediation, needs to be carried out to maintain the soil function in chemical spill sites.

Concept and Application of Generalized Preferential Flow Model (GPFM) (Generalized Preferential Flow Model (GPFM)의 개념과 적용사례 연구)

  • Kim, Young-Jin;Steenhuis, Tammo;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.33-36
    • /
    • 2007
  • In recent years the convective-dispersive equation has been often discredited in predicting subsurface solute transport under field conditions due to presence of preferential flow paths. Kim et al. (2005) proposed a simple equation that can predict the breakthrough of solutes without excessive data requirements. In their Generalized Preferential Flow Model (GPFM), the soil is conceptually divided in a saturated "distribution layer" near the surface and a "conveyance zone" with preferential flow paths below. In this study, we test the model with previously published data, and compare it with a classical convective-dispersive model (CDM). With three parameters required-apparent water content of the distribution zone, and solute velocity and dispersion in the conveyance zone-GPFM was able to describe the breakthrough of solutes both through silty and sandy loam soils. Although both GPFM and CDM fitted the data well in visual, variables for GPFM were more realistic. The most sensitive parameter was the apparent water content, indicating that it is the determining factor to apply GPFM to various soil types, while Kim et al. (2005) reported that changing the velocity of GPFM reproduced solute transport when same soils were used. Overall, it seems that the GPFM has a great potential to predict solute leaching under field conditions with a wide range of generality.

The Effect of Irrigation on the Growth of Horticultural Crops in a Sandy Loam (관수조건(灌水條件)이 사양토(砂壤土)에서 채소작물(作物)의 생육(生育)에 미치는 영향(影響))

  • Ryu, Kwan-Shig;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 1986
  • Responses of three different crops to soil water status were investigated in a Bonryang Sandy loam for 5 years. The changes in soil water potential, water and nutrient uptakes, growth pattern, water use efficiency and yield were analyzed under different irrigation conditions. Chinses cabbage showed more water stress than radish and red pepper in the non-irrigatedcultivation. The higher soil water potential, the more nutrient and water uptake, and evapotranspiration were observed. Water use efficiency was increased with the increase of evapotranspiration up to the optimum amount, whereas the efficiency was decreased when evapotranspiration was exceeded the optimum lebel. Little growth of chinese cabbage was observed when the soil water potential was lower than -1.7 bar at 20-30 cm depth in spring cultivation. The optimum soil water potential for irrigation was -0.2 bar, -0.5 bar and -0.2 - -0.5 bar for chinese cabbage, radish and red pepper, respectively. Optimum irrigation markedly improved the crop quality and yield in comparison to non irrigation condition.

  • PDF

Soil Detachment by Single and Multiple Waterdrops (우적(雨滴)에 의한 토양(土壤) 침식(侵蝕))

  • Miller, W.P.;Kim, Kye-Hoon
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.151-156
    • /
    • 1995
  • Single-drop splash/detachment studies and multiple-drop splash/detachment experiments were carried out to measure detachment by single and multiple drops. A raindrop tower 7.0 m in height was used to study soil splash by single drop raindrop impact over time on repacked soil samples in containers 76.2 mm in diameter. The waterdrop diameter and kinetic energy were 4.1 mm and $1.22{\times}10^{-3}$ J $drop^{-1}$, respectively. The samples consisted of five agricultural topsoils sieved to <2 mm, varying from sandy loam to clay loam in texture. The average weight of splashed soil particles after 75 drops did not show any significant difference between the five soils. The average weight of particles splashed by the first 15 drops showed that the sandy Pelham soil splashed to a greater degree than the others, and was therefore more detachable (p=0.05) than the other soils. The average weight of particles splashed by the last 15 drops also showed that the Pelham soil was the most detachable, with Cecil, Appling, Dyke, and Worsham soils being progressively less detachable. The effect of multiple drops on detachment was studied under a nozzle-type rainfall simulator at 74.9 mm $h^{-1}$ intensity for 85 min using the same soils as the single drop experiments. The total soil splash value for 85 min on Appling, Cecil, Dyke, Pelham, and Worsham soils were 6121, 6206, 4183, 5160, and 3247 g $m^{-2}$, respectively. There were no obvious relationships between soil loss measured from the different experiments.

  • PDF

Investigation of the Effect of Weirs Construction in the Han River on the Characteristics of Sediments (보 설치가 퇴적물 특성에 미치는 영향에 관한 연구)

  • Kang, Min Kyoung;Choi, In Young;Park, Ji Hyoung;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.597-603
    • /
    • 2012
  • To investigate the effects of weir construction on sediment characteristics of river bed, we conducted sediments sampling on the 9 locations near the weir, Kangchun, Yuju and Ipo in Namhan-River. Physical and chemical characteristics of sediments were analyzed by measuring particle size distribution, water content, Ignition loss, COD (Chemical Oxyzen Demand), TOC (Total Organic Carbon), TP (Total Phosphorus), SRP (Soluble Reactive Phosphorus) and TN (Total Nitrogen). Particle classification of all three weir sediments showed sandy loam that was caused by the river bed dredging. Due to the presence of weir, Ignition loss, COD, TOC, TP, SRP and TN showed similar trend such as the concentrations of upward weir had higher than those of downward weir. For the case of SRP concentration and C/N ratio, however, there is not much difference in the sediment characteristics compared to the those of sediments before weir construction. Therefore, It can be predicted that there are little effects of weir construction on sediment characteristics. However, weir construction could influence water quality of the river by controlling the transport and the accumulation of suspended materials from rainfall. Therefore, more intensive monitoring is required to examine the magnitude and patterns of sediment accumulation which could influence overlying water quality.

Breakthrough Curves and Elution Patterns of Heavy Metals in Sandy Clay Loam and Clay Soils (사질식양토와 식토토양에서의 중금속의 용탈과 파쇄곡선)

  • Chung, Doug-Young;Noh, Hyun-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • We investigated the mobilization of Cd, Pb, and Cr in two different soils in response to sorption capacities and competition for available sorption site while they moved under saturated water conditions. Two soil samples that were clay and sandy clay loam were collected within 20 cm from the upland surface. To do this, we used three different systems of heavy metal combinations such as single, binary, and ternary as solution phase. And then we observed the breakthrough curve (BTC) and elution as a function of pore volume by applying heavy metal solution and displacing K solution until these curves reached to maximum and minimum. The results showed that BTC and elution curves were not symmetric and it required more pore volumes with increasing species of heavy metals in solution phase, as well as longer tailings. Compared the areas over and under BTC and elution curve, relatively small amount of heavy metal was displaced by K even though there were differences in electronegativity among heavy metals. Conclusively, we assumed that heavy metals transport in soil could be influenced by soil physical nonequilibrium and chemical equilibrium in solution as far as there were more than two species of heavy metals existed.

pH Dependence on EC in Soils Amended with Fertilizer and Organic Materials and in Soil of Plastic Film House (비료와 퇴구비를 처리한 토양과 시설재배지 토양에서 토양의 EC에 따른 pH변화)

  • Kim, Yoo-Hak;Kim, Myeong-Sook;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.247-252
    • /
    • 2005
  • Soil pH is an intensity factor of releasing hydrogen ion which is buffered by aluminum. It depends on pH buffer capacity of Al whether soil pH is governed directly by cations or not. A study was conducted to elucidate the pattern of pH changes by soil EC. Fertilizer and three kinds of organic manures composed of cow and pig and fowl dropping and one kind of rice straw compost were added independently into upland sandy loam soil. This treated soils and four upland soils under plastic film house having different levels in electrical conductivity (EC) were incubated with field capacity at $30^{\circ}C$ for 5, 10, 20 and 40 days. Soil pH varied directly as the cations contained in organic materials according to degree of saturating pH buffer capacity (pBC) of sandy loam soil. pH of the soils under plastic film house was lowered by soil EC due to governing by overplus of cation beyond pBC.