DOI QR코드

DOI QR Code

Changes in Soil Properties Related to Soil Function due to Chemical Spills with Strong Acid and Base

강산 및 강염기 토양 유출에 따른 토양의 생태기능 관련 토양특성 변화

  • Jeon, Inhyeong (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jung, Jae-Woong (Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology) ;
  • Nam, Kyoungphile (Department of Civil and Environmental Engineering, Seoul National University)
  • 전인형 (서울대학교 건설환경공학부) ;
  • 정재웅 (안전성평가연구소 경남환경독성본부) ;
  • 남경필 (서울대학교 건설환경공학부)
  • Received : 2017.10.23
  • Accepted : 2017.11.22
  • Published : 2017.12.31

Abstract

In this study, changes of soil properties including soil texture, specific surface area, organic matter content, pH, cation exchange capacity and exchangeable cations content were investigated in response to strong acid or base accident. The properties changed significantly when the soil reacted with 10 M HCl or 1 M NaOH (i.e., when one gram of soil received 50 and 5 mmol of HCl or NaOH), respectively. When the soil reacted with 10 M HCl or 1 M NaOH solution, soil texture changed from sandy loam to loamy sand and specific surface areas decreased from $5.84m^2/g$ to 4.85 and $1.92m^2/g$, respectively. The soil organic matter content was reduced from 3.23% to 0.96 and 0.44%, and the soil pH changed from 5.05 to 2.35 and 10.65, respectively. The cation exchange capacity decreased from 10.27 cmol/kg to 4.52 and 5.60 cmol/kg, respectively. Especially, high concentrations of $Al^{3+}$ or $Na^+$ were observed in acidic or basic spills, respectively, which is likely to cause toxicity to terrestrial organisms. The results suggest that restoration of soil properties, as well as soil remediation, needs to be carried out to maintain the soil function in chemical spill sites.

본 연구에서는 강산 및 강염기 유출사고가 발생하였을 때 육상생물의 생육에 영향을 미칠 수 있는 토양특성의 변화를 살펴보았다. 강산과 강염기 화학물질로 HCl과 NaOH을 선정하였으며 이들 물질을 토양과 반응시킨 후 토양의 토성, 비표면적, 유기물함량, pH, 양이온교환능력 및 치환성양이온 함량 변화를 측정하였다. 토양과 반응한 HCl 및 NaOH 농도가 각각 10 M과 1 M인 경우 (즉, 토양 1 g 당 50 mmol의 HCl이나 5 mmol의 NaOH가 유입된 경우) 유의한 수준의 토양 특성 변화가 관찰되었다. 10 M HCl 및 1 M NaOH 용액과 반응한 토양의 토성은 sandy loam에서 loamy sand로 변하였으며, 비표면적은 $5.84m^2/g$에서 각각 4.85 및 $1.92m^2/g$으로 감소하였다. 토양 유기물 함량은 3.23%에서 0.96 및 0.44%로 크게 감소하였으며, 반응 전 pH 5.05로 약산성인 토양의 pH는 각각 2.35 및 10.65로 변하였다. 토양 내 양이온교환능력은 10.27 cmol/kg에서 4.52 및 5.60 cmol/kg으로 크게 감소하였으며 $Na^+$을 제외한 알칼리성 양이온 ($K^+$, $Mg^{2+}$, $Ca^{2+}$)의 함량이 감소하였다. HCl과 반응한 경우 $Na^+$ 함량은 감소, $Al^{3+}$ 함량은 증가하였으나 반대로 NaOH와 반응한 경우 $Na^+$ 함량은 증가, $Al^{3+}$ 함량은 감소하였다. 높은 농도의 $Al^{3+}$$Na^+$은 각각 토양생물에게 직접적인 독성을 발현하거나 토양의 투수성을 감소시키고 중탄산염의 농도를 증가시켜 독성을 발현할 수 있다. 본 연구는 강산 및 강염기유출사고로 인하여 변화한 토양특성이 토양의 생태기능에 영향을 줄 수 있음을 보여준다.

Keywords

References

  1. Agency for Toxic Substances and Disease Registry. 2017. Minimal Risk Levels (MRLs), available at https://www.atsdr.cdc.gov/mrls/pdfs/atsdr_mrls.pdf.
  2. Bohn, H.L., McNeal, B.L. and O'Conner, G.A. 2002. Soil Chemistry, Second Edition, John Wiley & Sons.
  3. Brunauer, S., Emmett, P.H. and Teller, E. 1938. Adsorption of gases in multimolecular layers, Journal of the American chemical society, 60(2): 309-319. https://doi.org/10.1021/ja01269a023
  4. Conyers, M.K. and Davey, B.G. 1988. Observations on some routine methods for soil pH determination, Soil Science, 145(1): 29-36. https://doi.org/10.1097/00010694-198801000-00004
  5. Hernández-Soriano, M.C. 2012. The role of aluminum-organo complexes in soil organic matter dynamics, Soil Health and Land Use Management., InTech.
  6. Hillel, D. and Hatfield, J.L. (Eds.). 2005. Encyclopedia of Soils in the Environment (Vol. 2), Amsterdam: Elsevier.
  7. Korea Occupational Safety and Health Agency (KOSHA). 2017. Material safety data sheets - hydrochloric acid, available at http://msds.kosha.or.kr/.
  8. Lee, C.H. 2013. Recent problems of chemical accidents and prevention measures, Review of Monthly Labor, 18-25. (in Korean)
  9. Lee, Y.G. 2014. Finding problems and alternatives to chemical spills, Forum of Citizens' Movement for Environmental Justice (2014.5). (in Korean)
  10. Lin, C. and Coleman, N.T. 1960. The measurement of exchangeable aluminum in soils and clays, Soil Science Society of America Journal, 24(6): 444-446. https://doi.org/10.2136/sssaj1960.03615995002400060009x
  11. Miller, W.P. and Miller, D.M. 1987. A micro-pipette method for soil mechanical analysis, Communications in Soil Science & Plant Analysis, 18(1): 1-15. https://doi.org/10.1080/00103628709367799
  12. Ministry of Environment (MOE). 2011. Chemical Accident Emergency Response Guide (#11-1480347-0000026-01). (in Korean)
  13. Ministry of Environment (MOE). 2017. Chemistry Safety Clearing-house, available at http://csc.me.go.kr/. (in Korean)
  14. National Institute of Environmental Research (NIER). 2013. A study on the method of environmental impact investigation by accident of acidic chemicals (#11-1480523-001642-01). (in Korean)
  15. National Institute of Environmental Research (NIER). 2014. Regulation of specific method for risk assessment of chemicals, NIER notification 2014-48. (in Korean)
  16. Panda, A.K., Mishra, B.G., Mishra, D.K. and Singh, R.K. 2010. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363(1): 98-104. https://doi.org/10.1016/j.colsurfa.2010.04.022
  17. Pandey, A.K., Pandey, S.D. and Misra, V. 2000. Stability constants of metal-humic acid complexes and its role in environmental detoxification, Ecotoxicology and environmental safety, 47(2): 195-200. https://doi.org/10.1006/eesa.2000.1947
  18. Schollenberger, C.J. and Simon, R.H. 1945. Determination of exchange capacity and exchangeable bases in soilammonium acetate method, Soil Science, 59(1): 13-24. https://doi.org/10.1097/00010694-194501000-00004
  19. Tyagi, Beena, Chintan D. Chudasama, and Raksh V. Jasra., 2006, Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64(2): 273-278. https://doi.org/10.1016/j.saa.2005.07.018
  20. Ulrich, B. and Sumner, M.E. (Eds.). 2012. Soil acidity, Springer Science & Business Media.
  21. Veihmeyer, F.J. and Hendrickson, A.H. 1949. Methods of measuring field capacity and permanent wilting percentage of soils., Soil science, 68(1): 75-94. https://doi.org/10.1097/00010694-194907000-00007
  22. Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil science, 37(1): 29-38. https://doi.org/10.1097/00010694-193401000-00003
  23. Weil, R.R., Brady, N.C. and Weil, R.R. 2016. The nature and properties of soils. Pearson.

Cited by

  1. 농업환경 분야에서의 토양 리질리언스와 그 위협 요인 vol.7, pp.1, 2020, https://doi.org/10.17820/eri.2020.7.1.026