Concept and Application of Generalized Preferential Flow Model (GPFM)

Generalized Preferential Flow Model (GPFM)의 개념과 적용사례 연구

  • Kim, Young-Jin (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Steenhuis, Tammo (Department of Bio. & Environmental Engineering, Cornell University) ;
  • Nam, Kyoung-Phile (Department of Civil and Environmental Engineering, Seoul National University)
  • Published : 2007.10.31

Abstract

In recent years the convective-dispersive equation has been often discredited in predicting subsurface solute transport under field conditions due to presence of preferential flow paths. Kim et al. (2005) proposed a simple equation that can predict the breakthrough of solutes without excessive data requirements. In their Generalized Preferential Flow Model (GPFM), the soil is conceptually divided in a saturated "distribution layer" near the surface and a "conveyance zone" with preferential flow paths below. In this study, we test the model with previously published data, and compare it with a classical convective-dispersive model (CDM). With three parameters required-apparent water content of the distribution zone, and solute velocity and dispersion in the conveyance zone-GPFM was able to describe the breakthrough of solutes both through silty and sandy loam soils. Although both GPFM and CDM fitted the data well in visual, variables for GPFM were more realistic. The most sensitive parameter was the apparent water content, indicating that it is the determining factor to apply GPFM to various soil types, while Kim et al. (2005) reported that changing the velocity of GPFM reproduced solute transport when same soils were used. Overall, it seems that the GPFM has a great potential to predict solute leaching under field conditions with a wide range of generality.

최근 들어 preferential flow같은 현장조건의 불균질한 매질을 이동하는 지하수 거동해석에 이류 분산 방정식을 적용하는데 많은 문제점들이 제기되어 왔다. 이에 따라 Kim 등(2005)은 최소한의 모형인자로 preferential flow 경로를 통한 토양지하수의 흐름을 예측할 수 있는 간단한 모형을 개발한 바 있다. Kim 등(2005)이 제시한 Generalized Preferential Flow Model(GPFM)은 토양을 표층주변의 분배 층(distribution layer)과 그 밑의 운반구역(conveyance zone)으로 나누어 거동을 예측하고 있다. 본 연구에서는 GPFM을 간단히 소개하고 기존의 다른 실험결과에 적용한 후 이류분산방정식(CDM)과의 비교를 통해 모형을 검증해 보고자 하였다. 기존에 발표된 두 개의 실험값에 GPFM을 적용해본 결과, GPFM은 세 가지 인자-유효함수비, 유속, 분산계수-를 입력하여 silty 및 sandy loam 토양 내 추적자의 파과곡선을 잘 예측하였다. CDM을 이용한 예측 값과 비교한 결과 GPFM과 CDM 모두 실제 관측된 파과곡선과 일치된 경향을 보였으나, GPFM에 의해 추측된 인자들이 더 현실적으로 가능한 값을 나타내었다. 인용된 두 실험값에 GPFM을 적용할 경우 예측 값에 가장 영향을 끼친 인자는 유효함수비로 나타났는데, 이는 Kim 등(2005)이 같은 종류의 토양에서 유속이 GPFM의 결과에 가장 영향을 끼쳤다고 보고한 것에 비해, 다른 성질의 토양에서는 유효 함수비가 가장 결정적인 인자임을 보여준다. 본 연구를 통해 GPFM이 이용하기가 쉽고 여러 가지 현장조건에 적용성이 높아 preferential flow 경로를 통한 토양지하수의 흐름을 예측할 수 있는 유용한 도구임을 확인하였다.

Keywords

References

  1. Akhtar, M.S., Steenhuis, T.S., Richards, B.K., and McBride, M.B., 2003, Chloride and lithium transport in large arrays of undisturbed silt loam and sandy loam soil columns, Vadose Zone J., 2, 715-727 https://doi.org/10.2136/vzj2003.0715
  2. Kim, Y.-J., Darnault, C.J.G., Bailey, N.O., Parlange, J.-Y., and Steenhuis, T.S., 2005, Equation for Describing Solute Transport in Field Soils with Preferential Flow Paths, Soil Sci. Soc. Am. J., 69, 291-300
  3. Kung, K-J.S., T.S. Steenhuis, E. Kladivko, T.J. Gish, G. Bubenzer, and C.S. Helling., 2000. Impact of preferential flow on the transport of adsorptive and non-adsorptive tracers, Soil Sci. Soc. Am. J., 64, 1290-1296 https://doi.org/10.2136/sssaj2000.6441290x
  4. Lawes, J.B., Gilbert, J.H., and Warington, R., On the Amount and Composition of the Rain and Drainage Water Collected at Rothamstead, Williams Clowes and Sons, Ltd., London, 167 pp. Originally published in J. Royal Agr. Soc. of England XVII (1881) : 241-279, 311-350; XVIII (1882) : 1-71 (1882)
  5. Parker, J.C. and van Genuchten, M.Th., 1984, Determining Transport Parameters from Laboratory and Field Tracer Experiments, Virginia Ag. Exp. Station, Blacksburg. Bull., 84-3
  6. Ritsema, C.J., Dekker, L.W., Nieber, J.L., and Steenhuis, T.S., 1998, Modeling and field evidence of finger formation and finger recurrence in a water repellent sandy soil, Water Resour. Res., 34, 555-567 https://doi.org/10.1029/97WR02407
  7. Steenhuis, T.S., Boll, J., Shalit, G., Selker, J.S., and Merwin, I.A., 1994, A simple equation for predicting preferential flow solute concentrations, J. Environ. Qual., 23, 1058-1064 https://doi.org/10.2134/jeq1994.00472425002300050030x
  8. van der Molen, W.H., 1956, Desalinisation of saline soils as a column process, Soil Sci., 81, 1927