• Title/Summary/Keyword: sandwich structures

Search Result 478, Processing Time 0.023 seconds

A Study on Parameter and Behavior for Composite Steel-Concrete Structure of Sandwich System (샌드위치식 강-콘크리트 복합구조체의 매개변수 및 거동특성 연구)

  • 정연주;정광희;이필승;박성수;황일선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.75-82
    • /
    • 2000
  • A huge offshore structures such as immersed tunnel, ice-resisting wall are continuously subjected to large force from water pressure, wave action and impact loads. Composite steel-concrete structure of sandwich system has profitable advantages for a huge offshore structures. This composite structures should exhibit a high degree of strength and ductility, because of concrete confining effect and the property of steel plate. Therefore, it endures large deformation and absorbs a great deal of energy until failure. In this study, nonlinear analysis for composite steel-concrete structure of sandwich system was carried out, and certify the effects of various parameters, elastic·plastic behavior characteristic, load-carrying and failure mechanism.

  • PDF

Impact of a shock wave on a structure strengthened by rigid polyurethane foam

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.569-585
    • /
    • 2013
  • The use of the rigid polyurethane foam (RPF) to strengthen sandwich structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen sandwich steel structure under blast load. The sandwich steel structure is assembled to study the RPF as structural retrofitting. The filed blast test is conducted. The finite element analysis (FEA) is also used to model the sandwich steel structure under shock wave. The sandwich steel structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the numerical model. The RPF improves the sandwich steel structure performance under the blast wave propagation.

Experimental investigation of low-velocity impact characteristics of steel-concrete-steel sandwich beams

  • Sohel, K.M.A.;Richard Liew, J.Y.;Alwis, W.A.M.;Paramasivam, P.
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.289-306
    • /
    • 2003
  • A series of tests was conducted to study the behaviour of steel-composite sandwich beams under low velocity hard impact. Damage characteristic and performance of sandwich beams with different spacing of shear connector were evaluated under impact loading. Thin steel plates were used as top and bottom skins of the sandwich beams and plain concrete was used as the core material. Shear connectors were provided by welding of angle sections on steel plates. The sandwich beams were impacted at their midpoint by a hemi-spherical nose shaped projectile dropped from various heights. Strains on steel plates were measured to study the effects of impact velocity or impact momentum on the performance of sandwich beams. Spacing of shear connectors is found to have significant effects on the impact response of the beams.

The Development of Inner Structure of Metallic Sandwich Plates for Bending (굽힘성형을 위한 금속 샌드위치판재의 내부구조재 개발)

  • Seong, D.Y.;Jung, C.G.;Yoon, S.J.;Shim, D.S.;Lee, S.H.;Ahn, D.G.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.126-131
    • /
    • 2006
  • Metallic sandwich plates are ultra-light materials not only with high strength and stiffness but also with other multifunctional physical properties. Inner dimpled shell structure can be fabricated by a piecewise sectional forming process, and then bonded with face sheets of the same material by resistance welding. Possible region for bending and limit radius of curvature are defined to compare the formability of sandwich plates. Tests have shown that sandwich plates with inner dimpled shell structure subject to bending have longer possible region for bending and smaller limit radius of curvature than other types of sandwich plates. The proposed inner dimpled shell structure is shown to have better formability of sandwich plates for bending than other types inner structures.

Dynamic/static stability characteristics of sandwich FG porous beams

  • Weijia Yu;Linyun Zhou
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.203-210
    • /
    • 2023
  • In the present research, dynamic deflections of a sandwich beam having functionally graded (FG) porous core have been investigated assuming that the sandwich beam is exposed to a pulse load of blast type. The two layers of sandwich beam have been made of a polymeric matrix reinforced by graphene oxide powder (GOP). The micromechanical formulation of the layers has been done via Halpin-Tsai model. The solution method is chosen to be Ritz method which is an efficient method to solve the system of equations of beams modeled based on a higher-order theory. To derive the time history of sandwich beam under pulse load, Laplace method has been used. The porosity content of the core, the GOP content of the layers, thickness of the layer and also duration of the applied load have great influences of the responses of sandwich beam.

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.

Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model

  • Kettaf, Fatima Zohra;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.399-423
    • /
    • 2013
  • In the present study, the thermal buckling behavior of functionally graded sandwich plates is studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally consistent and gives four governing equations. Number of unknown functions involved in displacement field is only four, as against five in case of other shear deformation theories. This present model takes into account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates.

A Study on Analysis of Mode I interlaminar Fracture Toughness of Foam Core Sandwich Structures (FOAM CORE SANDWICH 구조재의 Mode I 층간분리 파괴인성의 해석에 관한 연구)

  • Son, Se-Won;Gwon, Dong-An;Hong, Seong-Hui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.81-86
    • /
    • 2000
  • This paper was carried out to investigate the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening loading mode by using the double cantilever beam (DCB) specimens in Carbon/Epoxy and foam core composites. instead of using symmetric geometry of DCB specimen non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate({{{{ {G }_{IC } }}}}) were compared. Fracture toughness of foam core sandwich structures by autoclave vacuum bagging and hotpress were compared and analyzed. Experiment nonlinear beam bending FEM method were performed. Suggested bonding surface compensation and equivalent area inertia moment was used to calculate the energy release rate in nonlinear analytical results. The conclusions among experimental nonlinear analytical and FEM results was observed. The vacuum bagging method was shown to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}) to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}).

  • PDF

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami;Amar Kahil;Lazreg Hadji;Royal Madan;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.263-277
    • /
    • 2023
  • Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.