DOI QR코드

DOI QR Code

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami (Mouloud Mammeri University, Department of Civil Engineering) ;
  • Amar Kahil (Mouloud Mammeri University, Department of Civil Engineering) ;
  • Lazreg Hadji (Department of Civil Engineering, University of Tiaret) ;
  • Royal Madan (Department of Mechanical Engineering, G H Raisoni Institute of Engineering & Technologie) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2022.05.06
  • Accepted : 2022.11.28
  • Published : 2023.01.25

Abstract

Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.

Keywords

References

  1. Akhavan Alavi, S.M., Mohammadimehr, M. and Ejtahed, S.H. (2021), "Vibration analysis and control of micro porous beam integrated with FG-CNT distributed piezoelectric sensor and actuator", Steel Compos. Struct., 41(4), 595-608. https://doi.org/10.12989/SCS.2021.41.4.595.
  2. Al-Saedi, D.S.J., Masood, S.H., Faizan-Ur-Rab, M., Alomarah, A. and Ponnusamy, P. (2018), "Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM", Mater. Des., 144, 32-44, https://doi.org/10.1016/j.matdes.2018.01.059.
  3. Arefi, M., Firouzeh, S., Mohammad-Rezaei Bidgoli, E. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos. Struct., 247, 12391. https://doi.org/10.1016/j.compstruct.2020.112391.
  4. Assie, A., Akbas, S.D., Kabeel, A.M., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core", Steel Compos. Struct., 43(1), 79-90.
  5. Bacciocchi, M., Luciano, R., Majorana, C. and Tarantino, A.M. (2019), "Free vibrations of sandwich plates with damaged softcore and non-uniform mechanical properties: Modeling and finite element analysis: Materials, 12, 15, 2444, https://doi.org/10.3390/ma12152444.
  6. Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S. and Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888.
  7. Bui, T.Q., Khosravifard, A., Zhang, Ch., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104,. https://doi.org/10.1016/j.engstruct.2012.03.041.
  8. Chehel Amirani, M., Khalili, S.M.R. and Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free Galerkin method", Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023.
  9. Chen, D., Kitipornchai, S., and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  10. Chen, H., and Li, S. (2022), "Collinear nonlinear mixed-frequency ultrasound with FEM and experimental method for structural health prognosis, Processes, 10(4), 656. https://doi.org/10.3390/pr10040656.
  11. Daikh, A.A., and Zenkour, A.M. (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
  12. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane". J. Appl. Mech., 50(6), 609-614. https://doi.org/10.1115/1.3167098
  13. Demirhan, P.A. and Taskin, V. (2017), "Levy solution for bending analysis of functionally graded sandwich plates based on four variable plate theory", Compos. Struct., 177, 80-95. https://doi.org/ 10.1016/j.compstruct.2017.06.048.
  14. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004.
  15. Fasana, A. and Marchesiello, S. (2001), Rayweigh-Ritz Analysis sandwich beams", J. Sound Vib., 241(4), 643-652. https://doi.org/10.1006/jsvi.2000.3311.
  16. Garg, A., Chalak, H.D., Belarbi, M.-O. and Zenkour, A.M. (2022), "A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core", Archiv. Civil Mech. Eng., 22(1), 56. https://doi.org/10.1007/s43452-021-00368-3.
  17. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
  18. Hadji, L., Ait Atmane, H., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech. -Engl. Ed., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9.
  19. Hafizpour, H.R. and Simchi, A. (2008), "Investigation on compressibility of Al-SiC composite powders", Powder Metallurgy, 51(3), 217-223. https://doi.org/10.1179/174329007X22250.
  20. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/SEM.2019.71.1.089. 
  21. Hao, R.-B., Lu, Z.-Q., Ding, H., and Chen, L.-Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  22. Hohe, J. and Librescu, L. (2004), "Advances in the structural modeling of elastic sandwich panels", Mech. Adv. Mater. Struct., 11(4-5), 395-424. https://doi.org/10.1080/15376490490451561.
  23. Hong, C., Du, J., Liang, J., Zhang, X. and Han, J. (2011), "Functionally graded porous ceramics with dense surface layer produced by freeze-casting", Ceramics Int., 37(8), 3717-3722. https://doi.org/10.1016/j.ceramint.2011.04.119.
  24. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499.
  25. Kamrani, S., Riedel, R., Seyed Reihani, S.M. and Kleebe, H.J. (2010), "Effect of reinforcement volume fraction on the mechanical properties of Al-SiC nanocomposites produced by mechanical alloying and consolidation", J. Compos. Mater., 44(3), 313-326. https://doi.org/10.1177/0021998309347570.
  26. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423, https://doi.org/10.12989/scs.2013.15.4.399.
  27. Khalili, S.M.R., Nemati, N., Malekzadeh, K. and Damanpack, A.R. (2010), "Free vibration analysis of sandwich beams using improved dynamic stiffness method", Compos. Struct., 92(2), 387-394. https://doi.org/10.1016/j.compstruct.2009.08.020.
  28. Kumar Sah, S. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multidirectional functionally graded sandwich plates", Compos. Struct., 279, 114795, https://doi.org/10.1016/j.compstruct.2021.114795.
  29. Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y., Bilotti, E., Essa, K., Zhang, H., Li, Z., Yan, F. and Peijs, T. (2020), "A review on functionally graded materials and structures via additive manufacturing: From multi scale design to versatile functional properties", Adv. Mater. Technol., 5(6), 1900981, https://doi.org/10.1002/admt.201900981.
  30. Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Marine Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
  31. Madan, R. and Bhowmick, S. (2020), "A review on application of FGM fabricated using solid-state processes", Adv. Mater. Proce. Technol., 6(3), 608-619. https://doi.org/10.1080/2374068X.2020.1731153.
  32. Madan, R. and Bhowmick, S. (2022), "Fabrication and microstructural characterization of Al-SiC based functionally graded disk", Aircraft Eng. Aeros. Technol., https://doi.org/10.1108/AEAT-03-2022-0096.
  33. Madan, R., Bhowmick, S., Hadji, L. and Tounsi, A. (2022), "Limit elastic speed analysis of rotating porous annulus functionally graded disks", Steel Compos. Struct., 42(3), 375-388. https://doi.org/10.12989/scs.2022.42.3.375.
  34. Madenci, E. and Ozkilic, Y.O. (2021), "Cyclic response of selfcentering SRC walls with frame beams as boundary", Steel Compos. Struct., 40(2), 157-173, https://doi.org/10.12989/SCS.2021.40.2.157.
  35. Matula, I., Dercz, G. and Barczyk, J. (2020), "Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications", Mater. Sci. Technol., 36(9), 972-977. https://doi.org/10.1080/02670836.2019.1593603.
  36. Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers", Appl. Mathem. Modelling, 96. 66-79, https://doi.org/10.1016/j.apm.2021.03.013.
  37. Ning, J., Sievers, D.E., Garmestani, H. and Liang, S.Y. (2020), "Analytical modeling of part porosity in metal additive manufacturing", Int. J. Mech. Sci., 172, 105428. https://doi.org/10.1016/j.ijmecsci.2020.105428.
  38. Onvani, D., Jafari, A. and Dehkordi, M.B. (2021), "Carrera unified formulation for bending and free vibration analysis of sandwich plate with FG-CNT faces considering the both soft and stiff cores", Mech. Adv. Mater. Struct., 1-15, https://doi.org/10.1080/15376494.2021.1983899.
  39. Permoon, M.R. and Farsadi, T. (2021), "Free vibration of threelayer sandwich plate with viscoelastic core modelled with fractional theory", Mech. Res. Commun., 116, 103766. https://doi.org/10.1016/j.mechrescom.2021.103766.
  40. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
  41. Shi, J. and Teng, X. (2021), "Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment", Steel Compos. Struct., 40(6), 893-902. https://doi.org/10.12989/SCS.2021.40.6.893.
  42. Suresh, S. and Mortensen, A. (1997), "Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour", Int. Mater. Rev., 42(3), 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
  43. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030, https://doi.org/10.1016/j.compstruct.2021.114030.
  44. Tatsumi, A. and Fujikubo, M. (2020), "Ultimate strength of container ships subjected to combined hogging moment and bottom local loads part 1: Nonlinear finite element analysis", Marine Struct., 69, 102683, https://doi.org/10.1016/j.marstruc.2019.102683.
  45. Thieme, M., Wieters, K. P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J. and Grill, W. (2001), "Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants", J. Mater. Sci. Mater. Medicine, 12(3), 225-231. https://doi.org/10.1023/A:1008958914818.
  46. Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
  47. Van Vinh, P. and Huy, L.Q. (2022), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol., 18(3), 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
  48. Verma, R.K., Parganiha, D. and Chopkar, M. (2021), "A review on fabrication and characteristics of functionally graded aluminum matrix composites fabricated by centrifugal casting method", SN Appl. Sci., 3(2), 227. https://doi.org/10.1007/s42452-021-04200-8.
  49. Vo, T.P., Thai, H.-T., Nguyen, T.-K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
  50. Wang, Y. and Wang, X. (2016), "Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method", J. Sandw. Struct. Mater., 18(3), 294-320. https://doi.org/10.1177/1099636215601373.
  51. Wang, Y.Q. and Zhao, H.L. (2019), "Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method", Archive Appl. Mech., 89(11), 2335-2349. https://doi.org/10.1007/s00419-019-01579-0.
  52. Yang, Y., Chen, B., Lin, W., Li, Y. and Dong, Y. (2021), "Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation", Aeros. Sci. Technol., 110, 106495, https://doi.org/10.1016/j.ast.2021.106495.
  53. Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
  54. Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.
  55. Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.
  56. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022a), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094.
  57. Zhang, C., Mousavi, A.A., Masri, S.F., Gholipour, G., Yan, K. and Li, X. (2022b), "Vibration feature extraction using signal processing techniques for structural health monitoring: A review", Mech. Syst. Signal Processing, 177. 109175, https://doi.org/10.1016/j.ymssp.2022.109175.
  58. Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y. and Ma, Q. (2021), "Influence of CeO2 addition on forming quality and microstructure of TiC -reinforced CrTi4-based laser cladding composite coating", Mater. Character., 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732.
  59. Zhang, J., Zhu, Y., Li, K., Yuan, H., Du, J. and Qin, Q. (2022c), "Dynamic response of sandwich plates with GLARE facesheets and honeycomb core under metal foam projectile impact: Experimental and numerical investigations", Int. J. Impact Eng., 164. 104201. https://doi.org/10.1016/j.ijimpeng.2022.104201.