• Title/Summary/Keyword: sand production

Search Result 326, Processing Time 0.053 seconds

Evaluation of Physical and Chemical Properties of Crushed Sand for Highway Construction (고속도로 건설현장에서 사용되는 부순모래의 물리적, 화학적 특성 평가)

  • Lee, Chan-Young;Shim, Jae-Won;Kim, Jin-Cheol;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, evaluation of physical and chemical properties of crushed sand was performed to establish optimal mix proportion standard for concrete using crushed sand afterward. Most of properties of crushed sand were satisfied with KS F 2527. Especially, chemical stabilities such as alkali-aggregate reaction were fairly good. However, considerable attention would be required in using crushed sand from lime stone judging from the result that weight loss of it was more than 23.8%. There were some differences in the properties with production region, stone type and capacity of facility, therefore it is thought that quality should be controled by optimal regulations for corresponding items.

  • PDF

An Experimental Study on the Quality Variation by the Number of Production of Recycled Sand and Mechanics Properties of Mortar using Sand Flux Apparatus (샌드플럭스 장치를 이용한 순환모래의 생산횟수별 품질변화 및 모르타르의 역학특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Kim, Joon-Seok;Kim, Jae-Hwan;Lee, Jong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.81-88
    • /
    • 2009
  • This study has shown the tendency to enhance Sand Flux, a device of separating screening the foreign matter, for the recycling of construction waste possible to improve the quality of wet type production system meaningfully as part of research. As a result of experiment on the basic material properties, this study had a tendency to improve the quality and performance significantly in case of absolute surface dried density, 0.08mm sieve throughput, volume of clay lumps, and content of organic foreign matter. In addition, as a result of examining the quality characteristics of mortar, this study has shown the tendency that the flow and compressive strength more increased than the mortar using RS-II by utilizing RS-VI recycled sand produced finally through the device Sand Flux. As for the shrinkage properties, this study has shown the character the generation rate of crack of mortar using RS-IV recycled sand produced finally through the device Sand Flux.

  • PDF

Chloride Diffusion in Mortars - Effect of the Use of Limestone Sand Part II: Immersion Test

  • Akrout, Khaoula;Ltifi, Mounir;Ouezdou, Mongi Ben
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.109-112
    • /
    • 2010
  • Part I of this study was devoted to the electrical accelerated chloride diffusion in mortars. In this second part, natural chloride diffusion has been investigated for four types of mortars under exposure to a 0.5 mol/L NaCl solution for a period of up to 35 days. Two different types of sand were used for the production of test samples: siliceous sand (used as a reference) and limestone sand (used in this study). The effect of water to cement ratio and exposure time on the diffusion coefficients of mortars was also investigated. In this study, the total and free chloride content and penetration depth of mortar were measured after immersion, and Fick's second law of diffusion was fitted to the experimental data to determine the diffusion coefficient. Their results show that the use of crushed limestone sand in mortar had a positive effect on the chloride resistance. The apparent diffusion coefficient in all specimens was smaller than that in siliceous sand mortar. However, the chloride penetration of these mortars was increased as exposure time progressed.

Treatment Characteristics of Sand Filtration and Microfiltration (MF) in Advanced Water Treatment (고도정수처리에서 사여과와 정밀여과의 유기물처리특성에 관한 연구)

  • Kim, Hyung-Suk;Lee, Byoung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • With a belief of high water quality production and less chemical usage, membrane technology including Microfiltration (MF), Ultrafiltration (UF), and Nanofiltration(NF) is being employed more and more in drinking water treatment process. However, due to higher energy consumption of UF and NF, MF is normally used for drinking water treatment especially in a plant of large scale. In this investigation, performance ofsand filtration and membrane filtration was compared regarding removal of various water quality parameters, such as TOC, DOC, KMnO4 consumption, THMFP, and HAAFP. Two lines of pilot plant have been operated, one of which line is a traditional advanced water treatment process which includes sedimentation, sand filtration, ozonation, and activated carbon, and the other line is an alternative treatment process which includes sedimentation with inclined plate, MF membrane, ozonation, and activated carbon. For the first about 4months of period, MF filtration showed similar or little bit higher performance than sand filtration. However, after about 4month later, sand filtration showed much higher performance in removing all parameters monitored in the investigation. It was found that sand filtration is a better option than MF filtration as far as microbial community is fully activated in sand filter bed.

Investigation of Reclamation for Waste $CO_2$ Mold Sand of Steel Foundries in Busan and Gyeong Area (부산 ${\cdot}$ 경남지역 주강 공장의 $CO_2$ 주형 고사의 발생실태와 재생에 관한 연구)

  • Choi, Jun-Oh;Kim, Min-Seop;Choi, In-Seok;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • According to the investigation of waste $CO_2$ molding sand in the 15 steel foundries in Busan and Gyeong area, about 1 ton of waste $CO_2$ molding sand per ton of steel castings production was produced In order to reduce amount of $Na_2O$, Loss of Boiling (L.O.B), Loss of Ignition (L.O.I), Conductivity and PH which are present in the waste $CO_2$ molding sand below the reclamation effect, more than 50% of elimination for reclamation was required. It was found that the waste $CO_2$ molding sand does not contain a harmful component designated by industrial waste materials. Reclamation of the waste $CO_2$ molding sand was practically achieved by an abrasive-dry reclamation process. According to bench time of the sodium silicate-bonded $CO_2$ molding sand, reduction of compressive strength and surface stability index(S.S.I) become slowdown. Therefore, the reclaimed sand could be allowed the reuse of molding sand in $CO_2$ molding process including core sand.

Fundamental Characteristics of Concrete for Nuclear Power Plant Using Crushed Sand (부순모래 사용에 따른 원전 구조물용 콘크리트의 기초적 특성)

  • Park, Sung-Hak;Kim, Kyung-Hwan;Choi, Byung-Keol;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.168-176
    • /
    • 2017
  • This study, as a research for using crushed sand as a fine aggregate of concrete for nuclear structures, we improved the performance of impact crusher in the existing crushed sand production process and adjusted grain size to conform to ASTM C 33 The shape and grain size characteristics of a crushed sand were examined and concrete was prepared according to the substitution ratio of the sand to investigate the properties of fresh concrete and hardened concrete. The experimental results show that most of the concrete characteristics are equivalent to those of concrete using only heavy sand. However, when the substitution rate of steel sand exceeds 50%, the amount of air, compressive strength and tensile strength are somewhat reduced.

Fundamental Properties of Mortar and Concrete Using Waste foundry Sand

  • Moon Han-Young;Choi Yun-Wang;Song Yong-Kyu;Jeon Jung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.141-147
    • /
    • 2005
  • The development of automobile, vessel, rail road, and machine industry leads an increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 700,000 tons a year, but most WFS has been buried itself and only $5{\~}6\%$ WFS is recycled as construction materials. Therefore, it is necessary for most WFS to research other ways which can be used in a higher value added product. The study on recycling it as a fine aggregate for concrete or green sand has been in progress in America and Japan since 1970s and 1980s respaectively. In this study, two types of WFS were used as a fine aggregate for concrete. Nine types of concrete aimed at the specified strength of 30 MPa were mixed with washed seashore coarse sand in which salt was removed, and WFS and then appropriate mixture proportion of concrete was determined. Moreover, basic properties such as air contents, setting time, bleeding, workability and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

A study on the reduction of blow hole defects in aluminum sand casting (알루미늄 사형주조에서 기공 결함 감소를 위한 연구)

  • Lee, Dong-Youn;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.52-57
    • /
    • 2020
  • In this study attempted to prevent defects due to blow holes among defects of sand casting products. It was intended to reduce the defect rate by reducing the blow hole of the inner surface. Currently, expectations and requirements for the quality level of non-ferrous aluminum casting in the casting industry are increasing. In addition, the shape is complex and the shrinkage precision is required. Among them, the test prototype is expensive to manufacture the mold, and the production time is also long, and the product is manufactured by sand casting. At this time, the highest defect rates are defects caused by shrinkage defects, surface defects, and blow holes.. At this study, the manufacturing time was shortened by using the shape of the fluid movement path in advance. Also, it is possible to reduce defects due to blow holes.