• Title/Summary/Keyword: sand piles

Search Result 225, Processing Time 0.022 seconds

Three-Dimensional Finite Element Analysis of Tieback Walls in Sand

  • Lim, Yu-Jin;Briaud, Jean-Louis
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-52
    • /
    • 1997
  • A three dimensional nonlinear finite element analysis is used to study the influence of various design decisions for tieback walls. The numerical model simulates the soldier piles and the tendon bonded length of the anchors with beam elements, the unbonded tendon with a spring element, the wood lagging with the shell elements, and the soil with solid 3D nonlinear elements. The soil model used is a modified hyperbolic model with unloading hysteresis. The complete sequence of construction is simulated including the excavation, and the placement and stressing of the anchors. The numerical model is calibrated against a full scale instrumented tieback wall at the National Geotechnical Experimentation Site (NGES) on the Riverside Campus of Texas A&M University. Then a parametric study is conducted. The results give information on the influence of the following factors on the wall behavior : location of the first anchor, length of the tendon unbonded zone, magnitude of the anchor forces, embedment of the soldier piles, stiffness of the wood lagging, and of the piles. The implications in design are discussed.

  • PDF

A Study on the p-y Curves by Small-Scale Model Tests (모형실험을 통한 말뚝의 p-y 곡선에 관한 연구)

  • Kim, Tae-Sik;Jeong, Sang-Seom;Kim, Young-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.41-51
    • /
    • 2008
  • The load distribution and deformation of single piles which is embedded in Jumunjin sand and Kimhae clay are investigated, based on small scale model tests. Special attention is given to the consideration of flexural rigidity in laterally loaded piles. To consider the flexural rigidity of the pile, tests are performed with the aluminium piles of three different length under different relative densities and undrained shear strength. The test results indicate that the initial slope from the results of tests is proportional to the depth and pile-soil rigidity in both soils. But the increasing rate of the initial slope in the clay is less than in the sand. In addition, the soil resistance is more related to the depth and soil condition than the pile rigidity. Base on the test results, an empirical formula is proposed, which is good agreement with previously published small scale model test and field lateral load test.

Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand (조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가)

  • Baek, Sung-Ha;Choi, Changho;Cho, Jinwoo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.97-110
    • /
    • 2019
  • Piles that support offshore wind turbine structures are dominantly subjected to cyclic lateral loads of wind, waves, and tidal forces. For a successful design, it is imperative to investigate the behavior of the cyclic laterally loaded piles; the p-y curve method, in which the pile and soil are characterized as an elastic beam and nonlinear springs, respectively, has been typically utilized. In this study, model pile tests were performed in a 1 g gravitational field so as to investigate the p-y behaviors of cyclic laterally loaded piles installed in saturated dense silty sand. Test results showed that cyclic lateral loads gradually reduced the overall stiffness of the p-y curves (initial stiffness and ultimate soil reaction). This is because the cyclic lateral loads disturbed the surrounding soil, which led to the decrement of the soil resistance. The decrement effects of the overall stiffness of the p-y curves became more apparent as the magnitude of cyclic lateral load increased and approached the soil surface. From the test results, the cyclic p-y curve was developed using a p-y backbone curve method. Pseudo-static analysis was also performed with the developed cyclic p-y curve, confirming that it was able to properly predict the behaviors of cyclic laterally loaded pile installed in saturated dense silty sand.

The Characteristics of Ground Improvement by Thixotropy in the Ground Surrounding by Sand Piles (Sand Pile 설치지반에서 틱소트로피에 의한 지반개량특성)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.99-107
    • /
    • 2001
  • 일반적으로 샌드파일 설치로 인해 파일주변지반은 교란되어 스미어 영향과 배수저항에 의해 압밀지연 현상이 발생하는 것으로 알려져 있다. 특히 예민한 점성토 지반일 경우 교란정도가 크며, 틱소트로피현상이 지연될 경우 지지력 및 압축특성은 불리하게 된다. 본 연구에서는 원지반 특성이 파악된 채취시료를 이용하여 완전 교란조건에서의 실내모형시험과, 염분농도변화에 의한 실내역학시험을 실시하였다. 실내모형시험 결과 낮은 하중단계에서의 압밀계수는 비교란 시료의 특성과 유사하게 나타났으며, 염분농도 증가에 따라 일축압출강도가 증가하고 강도회복은 빠르며 압축지수는 작게 나타났다. 결과적으로 점성토지반 간극수중 염분농도는 강도증대와 압축특성 변화에 영향을 주며, 틱소트로피 증대의 영향요소가 적은 담수지반에서 샌드파일을 시공할 경우 발생하는 과다침하의 한 원인으로 여겨지는바, 이와 같은 요인은 측방유동에 의한 침하거동과 함께 고려하여야 할 영향요소로 파악되어야 할 것으로 판단된다.

  • PDF

A Study on Characteristics of Ground Improvement in the Ground Surrounding by Sand Piles (Sand Pile 주변지반에서의 지반개량특성에 관한 연구)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.203-212
    • /
    • 2000
  • 샌드파일 주변지반은 교란으로 스미어 영향과 베수저항에 의해 압밀지연 현상이 발생하는 것으로 알려져 있다. 이와 같이 샌드파일 주변지반의 압밀특성에 미치는 영향을 파악하기 위하여 지반물성치에 따른 예측치와 계측을 통한 실측치에 대한 비교검토를 실시하였다. 압밀계수 특성인 압밀소요기간은 수평과 연직압밀계수를 동일하게 평가할 경우 예측과 실측치가 매우 유사한 결과를 보여주는 것으로 나타났다. 압축지수 특성인 침하량 분석결과 예측치에 비해 60~90%정도로 작게 평가되는데 이것은 공동확장이론에 의한 초기 방사(측)방향 압축을 고려할 경우 유사한 값을 얻을 수 있다. 따라서 샌드파일 주변지반에서의 거동특성을 파악하기 위하여 스미어 배수저항뿐 아니라, 초기 방사(측)방향 압축을 고려한 개량특성으로서의 평가도 필요한 것으로 판단된다.

  • PDF

Evaluation of Dynamic Group Pile Effect in Dry Sand by Centrifuge Model Tests (원심모형 실험을 이용한 건조토 지반에서의 군말뚝 효과 분석)

  • Yoo, Min-Taek;Cha, Se-Hwan;Choi, Jung-In;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.67-77
    • /
    • 2012
  • In this study, a series of centrifuge shaking-table tests for a $3{\times}3$ group pile and a single pile applied by sinusoidal wave was performed in dry sand for various pile spacings, ranging from three to seven times the pile diameter. A comparison of centrifuge tests of both single pile and group pile showed that the lateral ground response of the group pile was smaller than that of the single pile. In addition, the reduction in subgrade reaction for the group pile increased with decreasing pile spacing. The side piles, that is, the 1st row and 3rd row piles showed identical dynamic p-y behavior and the center pile in the 2nd row caused a lower reduction effect compared with the 1st and 3rd row piles. From the comparison between the p-y curves of the 2nd row piles, it was found that the lateral ground response of the outer pile in the 2nd row was less than that of the center pile in the 2nd row. The p-multipliers for the side piles, for the center pile and for the outer pile ranged from 0.28 to 0.77, from 0.55 to 1.0 and from 0.39 to 0.87, respectively.

Analysis of the Bearing Capacity of Drilled Shafts Compared with Driven Piles (항타말뚝과 비교한 현장타설말뚝의 지지력분석)

  • Lee, Seong-Jun;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.75-88
    • /
    • 1997
  • In this study an iterative procedure for the analysis of drilled shafts was proposed on the basis of the load transfer mechanism. Special attention was given to the estimation of bearing capacity of drilled shafts which was compared with driven piles, and then with the results of pile load test. The load displacement at the pile head was calculated by load than sfer curves (t -z curves, q-z curves) by using Vljayvergiya, Castelli and hi -linear models. Bab ed on the analytical results, it is found that the behavior of drilled shafts is different from that of driven piles the smaller the skin friction mobilized at the pile-boil interface, the smaller the development of the bearing capacity. Hence the greater pile head movement is required to mobilize the same mainitride of bearing capacity. This trend is more noticeable in sand than in clay. It is also found that as the length-todiameter ratios increase, the dirtference of ultimate bearing capacity between drilled shafts and driven piles is becoming lass ger in sand, but it is minor in clay.

  • PDF

A Study on Bearing Capacity for Installed Rammed Aggregate Pier (RAP의 배치형태에 따른 지지력에 관한 연구)

  • Kim, Younghun;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.19-26
    • /
    • 2009
  • Rammed Aggregate Pier (RAP) method is intermediate foundation between deep and shallow foundation, and it has been built in world wide. RAP represents a relatively new method that has grown steadily over 19 years since Geopier of USA developed this revolutionary method in 1989. The investigation and research in domestic is not accomplished. In this paper, the examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from changing the spacing of piles, namely installed rammed aggregate pier. Laboratory model test was administered in a sand box. Strain control test was conducted to determine the bearing capacities of the piers; 20 mm, 30 mm and 40 mm RAP in diameter using drilling equipment to make holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, as the space between each piers was closed, the settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, it allows greater chances to have more resistance to deformation, and shows more improved stability of structures. After from the verification work which is continuous leads the accumulation of the site measuring data which is various, and bearing capacity and the settlement is a plan where the research will be advanced for optimum installed RAP.

  • PDF

An Estimation of Bearing Capacity and Driveability of Steel Sheet Pile Installed by Vibratory Hammer (진동해머에 의해 설치되는 강널말뚝의 지지력 및 항타관입성 평가)

  • Lee, Seung-Hyun;Yune, Chan-Young;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.339-347
    • /
    • 2007
  • Penetration tests were performed for two types of steel sheet piles which were driven in clay deposit and sand deposit. Penetration velocity data acquired from penetration tests were used in order to estimate bearing capacity and vibro-driveability of steel sheet piles. Bearing capacity values predicted from Davisson method and Bombard method were greater than that calculated from static bearing capacity formula by 11.9 times and 1.6 times respectively. Vibro-driveability predictions from $T\ddot{u}nkers$ method and ${\beta}$ method show correspondence to field test result fur sand deposit but not for clay deposit. From motor powers estimated by Savinov and Luskin method it can be seen that larger capacities of motor powers are required for clay deposit and adequate hammer was used for sand deposit.

  • PDF

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF