DOI QR코드

DOI QR Code

Evaluation of Dynamic Group Pile Effect in Dry Sand by Centrifuge Model Tests

원심모형 실험을 이용한 건조토 지반에서의 군말뚝 효과 분석

  • Yoo, Min-Taek (Dept. of Civil & Environmental Engineering, Seoul National Univ.) ;
  • Cha, Se-Hwan (Dept. of Civil & Environmental Engineering, Seoul National Univ.) ;
  • Choi, Jung-In (UCLA Dept. of Civil & Environmental Engineering) ;
  • Han, Jin-Tae (Korea Institute of Construction Technology) ;
  • Kim, Myoung-Mo (Dept. of Civil & Environmental Engineering, Seoul National Univ.)
  • Received : 2011.10.11
  • Accepted : 2011.12.16
  • Published : 2012.01.31

Abstract

In this study, a series of centrifuge shaking-table tests for a $3{\times}3$ group pile and a single pile applied by sinusoidal wave was performed in dry sand for various pile spacings, ranging from three to seven times the pile diameter. A comparison of centrifuge tests of both single pile and group pile showed that the lateral ground response of the group pile was smaller than that of the single pile. In addition, the reduction in subgrade reaction for the group pile increased with decreasing pile spacing. The side piles, that is, the 1st row and 3rd row piles showed identical dynamic p-y behavior and the center pile in the 2nd row caused a lower reduction effect compared with the 1st and 3rd row piles. From the comparison between the p-y curves of the 2nd row piles, it was found that the lateral ground response of the outer pile in the 2nd row was less than that of the center pile in the 2nd row. The p-multipliers for the side piles, for the center pile and for the outer pile ranged from 0.28 to 0.77, from 0.55 to 1.0 and from 0.39 to 0.87, respectively.

본 연구에서는 조밀한 건조 사질토 지반에서 단말뚝 및 $3{\times}3$ 군말뚝에 대해 정현파를 이용하여 동적 원심모형실험을 수행하였으며, 군말뚝의 경우 말뚝 중심간격을 지름의 3배, 5배, 7배로 변화시켜 실험을 실시하였다. 실험 결과로 얻은 단말뚝과 군말뚝의 동적 p-y 곡선들을 비교하여, 말뚝 중심 간격 및 군말뚝 말뚝 위치에 따른 말뚝의 동적 군말뚝 효과를 분석하였다. 분석 결과, 첫 번째 열과 세 번째 열의 말뚝인 측면 말뚝에서 유사한 동적 p-y 거동이 나타났으며, 두 번째 열 말뚝들은 측면 말뚝들에 비해 지반반력 감소 효과가 작게 나타났다. 또한, 두 번째 열 내에서 말뚝 위치에 따른 동적 p-y 거동을 비교한 결과, 두 번째 열의 바깥 말뚝에서 중앙 말뚝보다 지반반력 감소 효과가 크게 나타났다. 실험 결과를 바탕으로 제안된 말뚝 중심 간격에 따른 p-승수 값은 측면 말뚝에서 0.28 ~ 0.77, 중앙 말뚝에서 0.55 ~ 1.0, 바깥 말뚝에서 0.39 ~ 0.87로 나타났다.

Keywords

References

  1. 김성렬, 김성환, 정충기, 김명모 (2002), 실험 p-y 곡선을 이용한 동적 군말뚝 효과 분석, 한국지반공학회 논문집, 제18권 1호, pp.127-132.
  2. 도로교설계기준 (2001), 사단법인 대한토목학회.
  3. 양의규, 최정인, 한진태, 김명모 (2010), 1g 진동대 실험을 이용한 사질토 지반에서의 동적 군말뚝 효과 분석, 한국지반공학회논문집, 제 26권 8호, pp.77-88.
  4. 항만 및 어항시설의 내진설계표준서 (1999), 해양수산부.
  5. ASSHTO (2000), Bridge Design Specifications, Washington, D.C.
  6. ASSHTO (2010), Bridge Design Specifications, Washington, D.C.
  7. Brown, D. A., Reese, L. C., and O''Neill, M. W. (1987), "Cyclic lateral loading of a large-scale pile group", J. Geotech. Eng., Vol.113, No.11, pp.1326-1343. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:11(1326)
  8. Canadian Geotechnical Society (1992), Canadian Foundation Engineering Manual, 3rd Ed., BiTech Publishers, Ltd., Vancouver, B.C., Canada.
  9. Dou, H, and Byrne, PM (1996), "Dynamic Response of Single Piles and Soil-Pile Interaction", Canadian Geotechnical Journal, Vol.33, No.1, pp.80-96. https://doi.org/10.1139/t96-025
  10. El Naggar, MH, and Novak, M (1996), "Nonlinear Analysis for Dynamic Lateral Pile Response", Journal of Soil Dynamics and Earthquake Engineering, Vol.15, No.4, pp.233-244. https://doi.org/10.1016/0267-7261(95)00049-6
  11. Kondner, R. L. (1963), "Hyperbolic stress-strain response: Cohesive soils", J. Soil Mechanics and Foundations Div., ASCE, Vol.89, No.1, pp.115-144.
  12. Nam-Ryong Kim and Dong-Soo Kim (2010), "A Shear Wave Velocity Tomography System for Geotechnical Centrifuge Testing", Geotechnical Testing Journal, Vol.33, No.6, pp.434-444.
  13. National Cooperative Highway Research Program (2001), "Static and Dynamic Lateral Loading of Pile Groups", NCHRP Report 461, Transportation Research Board - National Research Council., pp.13-21.
  14. Ovesen, NK (1979), "The Scaling Law Relationship", Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering, Brighton, Vol.4, pp.319-323.
  15. PoLam, I, Kapuskar, M, and Chaudhuri D (1998), Modeling of Pile Footings and Drilled Shafts for Seismic Design, Technical Report MCEER-98-0018, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo.
  16. Reese, LC, Wang, ST, Arrellaga, JA, and Hendrix, J (1996), GROUP Version4.0 for Windows User's Manual, Ensoft, Ine. Austin, Tex.
  17. Reese, LC, and Van Impe, WF (2001), Single Piles and Pile Groups under Lateral Loading, Balkema, Rotterdam, The Netherlands.
  18. Rollins, KM, Peterson, K. T., and Weaver, T. J., (1998), "Lateral Load Behavior of Full-Scale Pile Group in Clay", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.6, pp.468-478. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(468)
  19. Rollins, K. M., and Sparks, A. E. (2002), "Lateral resistance of full-scale pile cap with gravel backfill", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.128, No.9, pp.711-723. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(711)
  20. Rollins, KM, Olsen, KG, Jensen, DH, Garrett, BH, Olsen, RJ, and Egbert, JJ (2006), "Pile Spacing Effects on Lateral Pile Group Behavior: Analysis", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.10, pp.1272-1283. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1272)
  21. Suzuki, Y. and Adachi, N. (2003), "Relation between subgrade reaction and displacement of model pile group based on horizontal loading tests", Journal of Structural and Construction Engineering, AIJ, 570 pp.115-122 (in Japanese).
  22. Ting, JM, Kauffman, CR, Lovicsek, M (1987), "Centrifuge Static and Dynamic Lateral Pile Behavior", Canadian Geotechnical Journal, Vol.24, pp.198-20. https://doi.org/10.1139/t87-025
  23. US Army (1993), Design of Pile Foundations, Technical Engineering and Design Guides No.1, U.S. Army Corps of Engineers, Washington, D.C.
  24. US Navy (1982), Foundations and earth structures-design manual 7.2, NAVFAC DM-7.2., Naval Facilities Engineering Command, Dept. of the Navy, Washington, D.C.
  25. Washington State Department of Transportation (2002), Bridge Design Manual, Chap.9, Olympia, Wash., 9.9-26.
  26. Yang, E. K., Jeong, S. S., Kim. J. H., Kim, M. M. (2011), "Dynamic p-y Backbone Curves from 1g Shaking Table Tests", KSCE Journal of civil engineering, Vol.15, No.5, 813-821. https://doi.org/10.1007/s12205-011-1113-0

Cited by

  1. 다양한 기초 형식에 따른 단자유도 구조물 지진하중 평가를 위한 동적 원심모형실험 vol.20, pp.5, 2012, https://doi.org/10.5000/eesk.2016.20.5.285