• Title/Summary/Keyword: sand permeability

Search Result 249, Processing Time 0.031 seconds

Stable Macro-aggregate in Wet Sieving and Soil Properties (습식체별에 안정한 대입단과 토양특성과의 관계)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Lee, Hyub-Sung;Oh, Dong-Shig;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.255-261
    • /
    • 2007
  • Soil aggregates, resulting from physico-chemical and biological interactions, are important to understand carbon dynamics and material transport in soils. The objective of this study is to investigate stable macro-aggregate (> 0.25mm diameter) in wet sieving (SM) and their relation to soil properties in 15 sites. The clay contents of soils were ranged from 1% to 33%, and their land uses included bare and cultivated lands of annual upland crops, orchard, and grass. Undisturbed 3 inch cores with five replicates were sampled at topsoil (i.e., 0- to 10-cm depth), for analyzing SM and physico-chemical properties, after in situ measurement of air permeability. SM of sandy soils, with clay content less than 2%, was observed as 0%. Except the sandy soils, SM of soils mainly depended on land uses, showing 27%~35% in soils with annual plants such as vegetable and corn, 51% in orchard, and 75% in grass. This sequence of SM is probably due to the different strength of soil disturbance like tillage with different land uses. SM had significant correlation with cation exchange capacity, organic matter content, sand, clay, silt, bulk density, and exchangeable potassium (K) and magnesium (Mg), whereas fluctuating properties with fertilization such as pH, EC, and water soluble phosphorus weren't significantly correlated to the SM. Particularly, exchangeable calcium (Ca) had significant relation with SM, only except soils with oversaturating Ca. This study, therefore, suggested that SM could perceive different land uses and the change of soil properties in soils, necessarily considering soil textures and Ca over-saturation.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments (택지개발에 따른 표면재료를 고려한 우수유출저감시설의 침투 특성에 관한 실험 연구)

  • Im, Janghyuk;Song, Jaiwoo;Park, Sungsik;Park, Hosang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2007
  • The increment of impermeable land area due to widespread land development caused the adverse impact on urban disaster prevention because it could decrease the peak rate of runoff as well as increase the runoff and peak flow during rainy period. To date, little research has been conducted on the infiltration characteristics and quantitative analysis because of their highly dependence on construction method, paving material, surface permeability, and field condition. Hence, this study was performed to investigate the infiltration characteristics of runoff-reducing facilities according to the type of paving material, which were examined using experimental apparatus with varying paving material and rainfall intensity, and thus to provide fundamental research data for runoff-reducing infiltration facilities. In this study, the infiltration characteristics were examined under the rainfall intensity of 20, 30, 50, 80, 100, 200 mm/hr for a variety type of paving materials such as concrete, asphalt, sand, grassland, and permeable paving material. The infiltration rate for permeable paving material was observed to be more than 93% under the condition of less than 200 mm/hr of rainfall intensity. For the compacted earth and grassland, the ultimate infiltration rate was estimated to be about 13% to 67%. The permeable paving material was concluded to be the most appropriate one for the runoff-reducing infiltration facilities because it has more favorable advantages than others in the light of infiltration volume, disaster prevention, and river training.

  • PDF

Effect of Fines on Unconfined Compressive Strength of Cemented Sands (세립분이 고결모래의 일축압축강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Sun-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.213-220
    • /
    • 2011
  • Fines such as silt or clay are usually mixed with granular particles in natural or reclaimed soils which are slightly cemented. Such fines contained within weakly cemented soils may influence permeability and also mechanical behavior of the soils. In this study, a series of unconfined compression tests on weakly cemented sands with fines are carried out in order to evaluate the effect of fines on unconfined compressive strength (UCS) of cemented soils. Two different cement ratios and fine types were used and fine contents varied by 5, 10, and 15%. Two types of specimens were prepared in this testing. One is the specimen with the same compaction energy applied. The other is the one with the same dry density by varying compaction energy. When the same amount of compaction energy was applied to a specimen, its density increased as a fine content increased. As a result, the UCS of cemented soils with fines increased up to 2.6 times that of one without fines as an amount of fines increased. However, when the specimen was prepared to have the same density, its UCS slightly decreased and then increased a little as a fine content increased. Under the same conditions, a UCS of the specimen with silt was stronger than the one with kaolin. As a cement ratio increased, a UCS increased regardless of fine type and content.

Estimation of Saturation Velocity in Soils During Rainfall using Soil Box Test (모형토조실험을 이용한 강우시 토층의 포화속도 산정)

  • Kim, Chul-Min;Song, Young-Suk;Kim, Hak-Joon
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.377-385
    • /
    • 2015
  • We constructed a model test apparatus to evaluate the dependence of the saturation velocity (Vs) in soils on rainfall intensity (IR). The apparatus comprises a soil box, a rainfall simulator, and measuring sensors. The model grounds (60 cm × 50 cm × 15 cm) were formed by Joomunjin standard sand with a relative density of 75%. The rainfall simulator can control the rainfall intensity to reenact the actual rainfall in a soil box. Time Domain Reflectometer (TDR) sensors and tensiometers were installed in the soils to measure changes in the volumetric water content and matric suction due to rainfall infiltration. During the tests, the soil saturation was determined by raising the groundwater table, which was formed at the bottom of the soil box. [Please check that the correct meaning has been maintained.] The wetting front did not form at the ground surface during rainfall because the soil particles were uniform and the coefficient of permeability was relatively high. Our results show that the suction stress of the soils decreased with increasing volumetric water content, and this effect was most pronounced for volumetric water contents of 20%-30%. Based on a regression analysis of the relationship between rainfall intensity and the average saturation velocity, we suggest the following equation for estimating the saturation velocity in soils: Vsavg (cm/sec) = 0.068IR (mm/hr).

Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands (사질토의 투수계수와 전기전도도 간의 상관관계)

  • Kim, Jinwook;Choo, Hyunwook;Lee, Changho;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.45-58
    • /
    • 2015
  • The aim of this study is to suggest a semi-empirical equation for estimating the hydraulic conductivity of sands using geoelectrical measurements technique. The suggested formula is based on the original Kozeny-Carman equation; therefore varying factors affecting the Kozeny-Carman equation were selected as the testing variables, and six different sands with varying particle sizes and particle shapes were used as the testing materials in this study. To measure both hydraulic and electrical conductivities, a series of constant head permeameter tests equipped with the four electrodes conductivity probe was conducted. Test results reveal that the effects of both pore water conductivity and flow rate in relation between hydraulic conductivity and formation factor (=pore water conductivity / measused conductivity of soil) of tested materials are negligible. However, because the variations of hydraulic conductivity of the tested sands according to particle sizes are significant, the estimated hydraulic conductivity using the formation factor varies with particle sizes. The overall comparison between the measured hydraulic conductivity and the estimated hydraulic conductivity using the suggested formula shows a good agreement, and the variation of hydraulic conductivity with varying Archie's m exponents is smaller compared with varying porosities.

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.

Sedimentological and Hydromechanical Characteristics of Bed Deposits for the Cultivation of Manila clam, Ruditapes philippinarum in Gomso Tidal Flat (곰소만 조간대 바지락 양식장 저질의 퇴적학적 및 수리역학적 특성)

  • CHO Tae-Chin;LEE Sang-Bae;KIM Suck-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.245-253
    • /
    • 2001
  • To investigate the effects of hydromechanical and textural characteristics of sediment deposits on the cultivation of Manila clam, Ruditapes philippinarum surface and sub-surface core sediments were collected seasonally in Gomso tidal flat. Grain size distribution were analyzed to investigate the annual variation of sediment texture. In winter unimodal distribution of grain size with the peak at $5\phi$ is dominant However, during the summer sediment texture become a little bit coarser and grain size distribution shows the peaks at $4\~5 \phi$. Optimum sediment texture for the cultivation of manila clam, R. philippinarum was found to be sandy silt in which mean Brain size was between 4 and $5 \phi$ with the sand content less than $50\%$ and clay content of $5\~10\%$. Mechanical and hydrological characteristics of sediment deposits were also studied in the laboratory and the results were applied to the numerical simulation for the behavior of surface sediment subjected to the cyclic loading from sea-water level change. Results of numerical simulation illustrate that the permeability of sediment had to be maintained in the range of $10^{-11}\sim10^{-12}m^2$ to ensure the proper sedimentological environment for the cultivation of manila clam, R. philippinarum. The deposits of virtually impermeable mud layer, with the threshold thickness of 4 cm, would be very hazardous to clam habitat.

  • PDF

Demonstration of Developed Numerical Procedure to Describe 3-dimensional Long-term Behavior of the Pleistocene Marine Foundations (Pleistocene 해저지반의 3차원 장기거동 해석을 위해 개발한 수치해석 기법의 입증)

  • Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.5-14
    • /
    • 2020
  • Kansai International Airport (KIX) was opened in September 1994. Although 26 years have passed since the completion of the first island, long-term settlement is still in progress. This settlement occurs in the Pleistocene layer. For it is not easy to determine the permeability of the Pleistocene sand layer because the thickness and the degree of fine content in the horizontal direction are constantly changing. In addition, it is also a difficult to predict the interactive behavior of the ground due to the construction of the second phase island adjacent to it. In order to solve this problem, a two-dimensional finite element analysis considering elasto-viscoplastic was performed to evaluate the long-term deformation, including the interactive behavior of the alternating Pleistocene foundation due to the construction of two adjacent reclaimed islands. In general, two-dimensional analysis can be used when a section can represent the entire sections. However, Kansai Airport is an artificial reclaimed island so two-dimensional analysis cannot solve the problem such as the stress deformation in the corners of the island. Additionally, the structure of the actual sub-ground through physical exploration is non-homogeneity and its thickness is also not constant. Therefore, there are limitations for the two-dimensional analysis to explain the phenomena. That is, three-dimensional analysis is strongly required. Due to these demands, the author extended the existing two-dimensional program capable of elasto-viscoplastic analysis to three-dimensional and completed the verification of the three-dimensional program developed through one-dimensional consolidation analysis. In order to demonstrate the validity of the developed 3D program that has been verified, an analysis is performed under the same analysis conditions as the existing research using a two-dimensional program. The effectiveness of the developed 3D numerical analysis program was demonstrated by comparing the analysis results with the 2D results and actual measurement data.

Assessment of the Correlation between Segregation Potential and Hydraulic Conductivity with Fines Fraction (세립분 함유량에 따른 동상민감성 지수와 수리전도도의 상관관계 평가)

  • Jin, Hyunwoo;Kim, Incheol;Eun, Jongwan;Ryu, Byung Hyun;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.47-56
    • /
    • 2021
  • The cryosuction (negative pore pressure) in freezing soils causes groundwater migration from the frozen fringe to freezing front for ice lens formation. Frost heave and heaving pressure by ice lens cause damage to ground infrastructure. In order to prevent damage by the frost heave, various frost susceptibility criteria have been proposed. The SP (Segregation Potential) is the most widely used classification criterion for frost susceptibility in cold regions. The expansion of the ice lens by the migration of the groundwater is a key role in frost heave mechanism, and thus it is necessary to evaluate the hydraulic conductivity. In this paper, soil mixtures of coarse-fines (sand-silt) were prepared in various weight fractions and used for frost heave and column permeability test. For each case, the SP and the hydraulic conductivity were derived and correlations were analyzed. As a results, the transition threshold of the SP and the hydraulic conductivity were shown at 20% and 50% of the silt weight fraction, respectively. Although there are difference between these transition thresholds, these two coefficients show a specific correlation. In the future, additional study should be conducted for detailed analysis of the threshold transition values between SP and hydraulic conductivity.