DOI QR코드

DOI QR Code

Assessment of the Correlation between Segregation Potential and Hydraulic Conductivity with Fines Fraction

세립분 함유량에 따른 동상민감성 지수와 수리전도도의 상관관계 평가

  • Jin, Hyunwoo (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Kim, Incheol (Dept. of Civil and Environmental Engrg., College of Engrg., Univ. of Nebraska-Lincoln) ;
  • Eun, Jongwan (Dept. of Civil and Environmental Engrg., College of Engrg., Univ. of Nebraska-Lincoln) ;
  • Ryu, Byung Hyun (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Lee, Jangguen (Dept. of Future & Smart Construction Research, Korea Institute of Civil Engrg. and Building Technology)
  • 진현우 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 김인철 (네브라스카대학교) ;
  • 은종완 (네브라스카대학교) ;
  • 유병현 (한국건설기술연구원 미래스마트건설연구본부) ;
  • 이장근 (한국건설기술연구원 미래스마트건설연구본부)
  • Received : 2021.11.18
  • Accepted : 2021.11.23
  • Published : 2021.12.31

Abstract

The cryosuction (negative pore pressure) in freezing soils causes groundwater migration from the frozen fringe to freezing front for ice lens formation. Frost heave and heaving pressure by ice lens cause damage to ground infrastructure. In order to prevent damage by the frost heave, various frost susceptibility criteria have been proposed. The SP (Segregation Potential) is the most widely used classification criterion for frost susceptibility in cold regions. The expansion of the ice lens by the migration of the groundwater is a key role in frost heave mechanism, and thus it is necessary to evaluate the hydraulic conductivity. In this paper, soil mixtures of coarse-fines (sand-silt) were prepared in various weight fractions and used for frost heave and column permeability test. For each case, the SP and the hydraulic conductivity were derived and correlations were analyzed. As a results, the transition threshold of the SP and the hydraulic conductivity were shown at 20% and 50% of the silt weight fraction, respectively. Although there are difference between these transition thresholds, these two coefficients show a specific correlation. In the future, additional study should be conducted for detailed analysis of the threshold transition values between SP and hydraulic conductivity.

영하의 온도에 의해 지반이 동결되며 발생하는 음의 간극수압은 frozen fringe로부터 간극수 이동을 유발해 ice lens를 형성시키며, ice lens 형성으로 인한 흙의 동상 및 동상팽창압은 지반구조물의 피해를 발생시킨다. 동상에 의한 피해를 방지하기 위해 다양한 동상민감성 판정이 수행되고 있으며, 그 중 가장 활발하게 활용되는 방법은 SP(Segregation Potential)를 이용한 동상민감성 판정이다. 또한, 간극수 이동에 의한 ice lens의 확장은 동상 메커니즘의 핵심 원인으로 작용하기 때문에 수리전도도에 관한 평가가 필요한 실정이다. 본 연구에서는 모래와 실트를 다양한 중량비로 혼합해 동상실험 및 투수실험에 활용하였으며, 각 경우에 대해 SP 및 수리전도도를 도출하여 비교분석하였다. 그 결과 SP 및 수리전도도가 급격하게 변화하는 임계 전이값이 각각 실트 함유량이 20% 및 50% 인 경우에 나타났다. 이러한 임계 전이값의 차이에도 불구하고 SP는 수리전도도가 감소함에 따라 일정 값에 수렴하는 상관관계를 나타내고 있으며, 향후 임계 전이값 사이에 관한 추가적인 연구가 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업인 "동결지반의 동상 해석 및 장기강도 평가 기술 개발(20210489-001)" 과제의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. ASTM International D5918 (2013), "Standard Test Methods for Frost Heave and Thaw Weakening Susceptibility of Soils", Am. Soc. Test. Mater., Pennsylvania, PA, USA.
  2. ASTM International D2487 (2017a), "Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)", Am. Soc. Test. Mater., Pennsylvania, PA, USA.
  3. ASTM International DD6913/D6913M (2017b), "Standard Test Methods for Particle-size Distribution (gradation) of Soils Using Sieve Analysis", Am. Soc. Test. Mater., Pennsylvania, PA, USA.
  4. Casagrande, A. (1931), "Discussion of Frost Heaving", Proc. Highway Res. Board, Vol.11, pp.168-172.
  5. Casagrande, A. (1938), "Notes on soil mechanics - first semester", Cambridge, Graduate School of Engineering, Harvard University.
  6. Dore, G. (2004), "Development and Validation of the Thaw-weakening Index", Int. J. Pav. Eng., Vol.5, No.4, pp.185-192. https://doi.org/10.1080/10298430412331317464
  7. Dore, G., Bilodeau, J.P., and Juneau, S. (2006), "Assessing and Using the Segregation Potential in Pavement Engineering", Proc. Int. Conf. Cold Reg. Eng. (ASCE), Maine, USA.
  8. Park, J., Castro, G.M., and Santamarina, J.C. (2018), "Closure to "Revised Soil Classification System for Coarse-Fine Mixtures" by Junghee Park and J. Carlos Santamarina", J. Geotech. Geoenviron. Eng., Vol.144, No.8, pp.07018019-1-3. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001908
  9. JGS 0172 (2009), "Test Method for Frost Susceptibility of Soils", Jpn Geotech. Soc., Tokyo, Japan.
  10. Jin, H., Ryu, B.H., and Lee, J. (2017), "Evaluation on the Reliability of Frost Susceptibility Criteria", J. Korean Geoenviron. Soc., Vol.18, No.12, pp.37-45. https://doi.org/10.14481/JKGES.2017.18.12.37
  11. Jin, H., Lee, J., Ryu, B.H., and Akagawa, S. (2019a), "Simple Frost Heave Testing Method Using a Temperature-controllable Cell", Cold Reg. Sci. Technol., Vol.157, pp.119-132. https://doi.org/10.1016/j.coldregions.2018.09.011
  12. Jin, H., Ryu, B.H., and Lee, J. (2019b), "Experimental Assessment and Specimen Height Effect in Frost Heave Testing Apparatus", J. Korean Geoenviron. Soc., Vol.20, No.1, pp.67-74. https://doi.org/10.14481/JKGES.2019.20.1.67
  13. Jin, H., Lee, J., Zhuang, L., and Ryu, B.H. (2020a), "Laboratory Investigation of Unconfined Compression behavior of Ice and Frozen Soil Mixtures", Geomech. Eng., Vol.22, No.3, pp.219-226. https://doi.org/10.12989/gae.2020.22.3.219
  14. Jin, H., Ryu, B.H., Kim, Y.J., and Lee, J. (2020b), "Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1", J. Korean Geotech. Soc., Vol.36, No.8, pp.17-25. https://doi.org/10.7843/KGS.2020.36.8.17
  15. Jin, H., Ryu, B.H., Kang, J.M., and Lee, J. (2021), "Engineering Approach to Determination of the Segregation Potential by the Upward-step-freezing Testing Method", Cold Reg. Sci. Technol., Vol.191, pp.103361-1-15. https://doi.org/10.1016/j.coldregions.2021.103361
  16. Jones, R.H. (1980), "Frost Heave of Roads", Q. J. Eng. Geol. Hydroge., Vol.13, No.2, pp.77-86. https://doi.org/10.1144/gsl.qjeg.1980.013.02.02
  17. Kim, U.G. and Zhuang, L. (2015), "Shear behavior of Sand-silt Mixture under Low and High Confining Pressures", J. Korean Geotech. Soc., Vol. 31, No. 3, pp. 27.38. https://doi.org/10.7843/KGS.2015.31.3.27
  18. Konrad, J.M. and Morgenstern, N.R. (1980), "A Mechanistic Theory of Ice Lens Formation in Fine-grained Soils", Can. Geotech. J., Vol.17, pp.473-486. https://doi.org/10.1139/t80-056
  19. Konrad, J.M. and Morgenstern, N.R. (1981), "The Segregation Potential of a Freezing Soil", Can. Geotech. J., Vol.18, pp.482-491. https://doi.org/10.1139/t81-059
  20. Konrad, J.M. and Morgenstern, N.R. (1982), "Effects of Applied Pressure on Freezing Soils", Can. Geotech. J., Vol.19, No.4, pp. 494-505. https://doi.org/10.1139/t82-053
  21. Konrad, J.M. (1987), "Procedure for Determining the Segregation Potential of Freezing Soils", AM. Soc. Test. Mater., Vol.10, No.2, pp.51-58.
  22. Konrad, J.M. (1988a), "Influence of Freezing Mode on Frost Heave Characteristics", Cold Reg. Sci. Technol., Vol.15, pp.161-175. https://doi.org/10.1016/0165-232X(88)90062-6
  23. Konrad, J.M. (1988b), "Influence of Overconsolidation on the Freezing Characteristics of a clayey silt", Can. Geotech. J., Vol.26, pp.9-21. https://doi.org/10.1139/t89-002
  24. Konrad, J.M. (1989), "Effect of Freeze.thaw Cycles on the Freezing Characteristics of a Clayey Silt at Various Overconsolidation Ratios", Can. Geotech. J., Vol.26, pp.217-226. https://doi.org/10.1139/t89-031
  25. Konrad, J.M. (1994), "Sixteenth Canadian Geotechincal Colloquium: Frost Heave in Soils; Concepts and Engineering", Can. Geotech. J., Vol.31, No.2, pp.223-245. https://doi.org/10.1139/t94-028
  26. Konrad, J.M. (1999), "Frost Susceptibility Related to Soil Index Properties", Can. Geotech. J., Vol.36, pp.403-417. https://doi.org/10.1139/t99-008
  27. Konrad, J.M. (2005), "Estimation of the Segregation Potential of Fine-grained Soils Using the Frost Heave Response of Two Reference Soils", Can. Geotech. J., Vol.42, pp.38-50. https://doi.org/10.1139/t04-080
  28. Lambe, T.W., Kaplar, C.W., and Lambie, T.J. (1969), "Effect of Mineralogical Composition of Fines on Frost Susceptibility of Soils", CRREL Technical Report 207, pp.1-31.
  29. Linell, K.A. and Kaplar, C.W. (1959), "The Factor of Soil and Material Type in Frost Action", Highway Res. Board, No.225, pp.81-128.
  30. Penner, E. (1976), "Grain Size as a Basis for Frost Susceptibility Criteria. Proceedings", 2nd Conf. Soil-Water Probl. Cold Reg., Edmonton, Alberta, Canada, pp.103-109.
  31. Penner, E. (1986), "Aspects of Ice Lens Growth in Soils", Cold Reg. Sci. Technol., Vol.13, pp.91-100. https://doi.org/10.1016/0165-232X(86)90011-X
  32. Saarelainen, S. (1996), "Pavement Design Applying Allowable Frost Heave", Proc. Int. Conf. Cold Regs. Eng. (ASCE), Alaska, USA.
  33. Seto, J.T.C. and Konrad, J.M. (1994), "Pore Pressure Measurements during Freezing of an Overconsolidated Clayey Silt", Cold Reg. Sci. Technol., Vol.22, pp.319-338. https://doi.org/10.1016/0165-232X(94)90018-3
  34. St-Laurent, D. (2010), "Direction Generale du Laboratoire des Chaussees", Logiciel de dimensionnement des chaussees souples, Vol. 2, Les Publications du Quebec (French).
  35. St-Laurent, D., Bergeron, G., and Roby, J. (2019), "Frost Action and Pavement Design", Proc. 18th Int. Conf. Cold Reg. Eng. and 8th Can. Permafr. Conf. (ICCRE-CPC), Quebec, Canada, Quebec Transportation Department.
  36. Svec, O.J. (1989), "A New Concept of Frost-heave Characteristics of Soils", Cold Reg. Sci. Technol., Vol.16, pp.271-279. https://doi.org/10.1016/0165-232X(89)90027-X
  37. Taber, S. (1929), "Frost heaving", J. Geol., Vol.37, pp.428-461. https://doi.org/10.1086/623637
  38. Taber, S. (1930), "The mechanics of frost heaving", J. Geol., Vol. 38, pp.303-317. https://doi.org/10.1086/623720
  39. Thevanayagam, S. (2003), "Role of intergranular contacts on mechanisms causing liquefaction & slope failures 275 in silty sands: Final report, Univ. Buffalo, NY, USA.