DOI QR코드

DOI QR Code

Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands

사질토의 투수계수와 전기전도도 간의 상관관계

  • Kim, Jinwook (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Choo, Hyunwook (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Changho (Dept. of Marine and Civil Engrg., Chonnam National Univ.) ;
  • Lee, Woojin (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 김진욱 (고려대학교 건축사회환경공학부) ;
  • 추현욱 (고려대학교 건축사회환경공학부) ;
  • 이창호 (전남대학교 해양토목공학과) ;
  • 이우진 (고려대학교 건축사회환경공학부)
  • Received : 2015.04.24
  • Accepted : 2015.06.09
  • Published : 2015.06.30

Abstract

The aim of this study is to suggest a semi-empirical equation for estimating the hydraulic conductivity of sands using geoelectrical measurements technique. The suggested formula is based on the original Kozeny-Carman equation; therefore varying factors affecting the Kozeny-Carman equation were selected as the testing variables, and six different sands with varying particle sizes and particle shapes were used as the testing materials in this study. To measure both hydraulic and electrical conductivities, a series of constant head permeameter tests equipped with the four electrodes conductivity probe was conducted. Test results reveal that the effects of both pore water conductivity and flow rate in relation between hydraulic conductivity and formation factor (=pore water conductivity / measused conductivity of soil) of tested materials are negligible. However, because the variations of hydraulic conductivity of the tested sands according to particle sizes are significant, the estimated hydraulic conductivity using the formation factor varies with particle sizes. The overall comparison between the measured hydraulic conductivity and the estimated hydraulic conductivity using the suggested formula shows a good agreement, and the variation of hydraulic conductivity with varying Archie's m exponents is smaller compared with varying porosities.

본 연구에서는 이론적 고찰을 통해 Kozeny-Carman식을 변형하여 전기전도도 측정을 통한 사질토의 투수계수 추정식을 제안하였다. 제안된 예측식에 대한 실험적 검증을 위해 6종류의 사질토에 대하여 4개의 전극을 설치한 정수위 투수시험을 실시하였으며, 다양한 변수들 하에 시험을 진행하였다. 시험 결과, 사질토에서 흙 입자 표면을 통한 전기전도는 미미하였으며, 간극수의 전기전도도가 투수계수와 formation facotor에 미치는 영향은 제한적이었다. 흙 입자의 유효입경이 formation factor에 미치는 영향은 미미하였으나 투수계수에는 큰 영향을 주었다. 제안된 식을 활용하여 투수계수를 예측하기 위해서는 형상계수와 Archie's m에 대한 정보가 필요하여 error norm방법을 사용해 형상계수를 구하였다. 또한, 간극률을 변화시키며 측정된 formation factor를 사용하여 Archie's m을 구하였다. formation factor를 사용하여 계산한 투수계수를 측정값과 같이 도시한 결과, 계산된 투수계수는 측정된 투수계수와 유사한 값을 보여주었다. 기존 Kozeny-Carman식과 본 연구에서 제안하는 전기전도도를 이용한 투수식 간의 정량적인 비교를 위해, 정규화된 투수계수를 사용하여 형상계수, Archie's m, 간극률에 따른 정규화된 투수계수의 변화를 비교한 결과, 형상계수와 Archie's m의 변화에 따른 정규화된 투수계수의 변화 폭에 비해, 간극률의 변화에 따른 정규화된 투수계수는 매우 큰 폭으로 변하였다. 따라서 본 연구에서 제안하는 전기전도도를 이용한 투수계수 예측식이 기존 Kozeny-Carman식보다 더 높은 신뢰도를 보일 것으로 판단된다.

Keywords

References

  1. Abu-Hassanein, Z. S., Benson, C. H., and Blotz, L. R. (1996). "Electrical Resistivity of Compacted Clays", Journal of Geotechnical Engineering, 122(5), pp.397-406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  2. Archie, G. E. (1942), "The Electrical Resistance Log as an Aid in Determining Some Reservoir Characteristics", Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 146, pp.54-62.
  3. ASTM D2434 (2010), "Standard Test Method for Permeability of Granular Soils (Constant Head)", ASTM International, West Conshohocken, PA.
  4. ASTM C136 (2006), "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates", ASTM International, West Conshohocken, PA.
  5. ASTM D4254 (2015), "Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density", ASTM International, West Conshohocken, PA.
  6. ASTM D4253 (2015), "Standard Test Methods for Maximum index density and unit weight of soils using a vibratory table", ASTM International, West Conshohocken, PA.
  7. Budhu, M. (2010), Soil Mechanics and Foundation, J. Wiley & Sons, Chichester, England.
  8. Carman, P. C. (1956), Flow of Gases through Porous Media, Academic Press Inc., Publication, New York, pp.13-15.
  9. Carrier, W. D. (2003), "Goodbye, Hazen; hello, Kozeny-Carman", Journal of Geotechnical and Geoenvironmental Engineering, 129(11), pp.1054-1056. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1054)
  10. Chapuis, R. P. (2004), "Predicting the Saturated Hydraulic Conductivity of Sand and Gravel Using Effective Diameter and Void Ratio", Canadian Geotechnical Journal, 41(5), pp.787-795. https://doi.org/10.1139/t04-022
  11. Chapuis, R. P. and Aubertin, M. (2003), "Predicting the Coefficient of Permeability of Soils Using the Kozeny-Carman Equation", Ecole polytechnique de Montreal, EPM-RT-2003-03, pp.1-35.
  12. Cho, G. C., Dodds, J., and Santamrina, J. C. (2006), "Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands", Journal of Geotechnical and Geoenvironmental Engineering, 123, pp.591-602.
  13. Cho, G. C., Lee, J. S., and Santamarina, J. C. (2004), "Spatial Variability in Soils: High Resolution Assessment with Electrical Needle Probe", Journal of geotechnical and geoenvironmental engineering, 130(8), pp.843-850. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(843)
  14. Choo, H. and Burns, S.E. (2014), "Review of Archie's Sequation through Theoretical Derivation and Experimental Study on Uncoated and Hematite Coated Soils", Journal of Applied Geophysics, 105, pp.225-234. https://doi.org/10.1016/j.jappgeo.2014.03.024
  15. Choo, H., Lee, C., Choi, Y., and Lee, W. (2014), "Relation between Hydraulic Conductivity and Geoelectric Measurement for Coarsegrained Materials", KGS Spring National Conference 2014, pp.522-529.
  16. Duner, W. (1994), "Hydraulic Conductivity Estimation for Soils with Heterogeneous Pore Structure", Water Resource Research, 30(2), pp.211-233. https://doi.org/10.1029/93WR02676
  17. Fair, G. M. and Hatch, L. P. (1933), "Fundamental Factors Governing the Stream-line Flow of Water through Sand", Journal of the American Water Works Association, 25, pp.1551-1565.
  18. Gomez, C. T., Dvorkin, J., and Vanorio, T. (2010), "Laboratory Measurements of Porosity, Permeability, Resistivity, and Velocity on Fontainebleau Sandstones", Geophysics, 75(6), E191-E204. https://doi.org/10.1190/1.3493633
  19. Holtz, R. D., Kovacs, W. D., and Sheahan, T. C. (2011), An Introduction to Geotechnical Engineering Second Edition, Pearson.
  20. Hong, Y., Lee, J., and Lee, C. (2014), "Application of Geophysical Techniques for Observing the Void Ratio Changes of Dredged Soils", Journal of the Korean Geotechnical Society, 30(9), pp.19-28. https://doi.org/10.7843/KGS.2014.30.9.19
  21. Jackson, P. D., Smith, T. D., and Standford, P. N. (1978), "Resistivityporosity-particle Shape Relationships for Marine Sands", Geophysics, 43(6), pp.1250-1268. https://doi.org/10.1190/1.1440891
  22. Jackson, P. D., Williams, J. F., Lovell, M. A., Camps, A., Rochelle, C., and Milodowski, A. E. (2007), "An Investigation of the Exponent in Archie's Equation: Comparing Numerical Modeling with Laboratory Data: Towards Characterizing Disturbed Samples from the Cascadia Margin:-IODP Expedition 311", The Society of Petrophysicsts and Well Log Analysis 48th Annual Logging Symposium 2007, June, pp.3-6.
  23. Khalil, M. and Monterio Santos, F. (2009), "Influence of Degree of Saturation in the Electric Resistivity-Hydraulic Conductivity Relationship", Surv Geophys, 30(6), pp.601-615. https://doi.org/10.1007/s10712-009-9072-4
  24. Kelly, W. E. and Frohlich, R. K. (1985), "Relations between Aquifer Electrical and Hydraulic-properties", Ground Water, 23(2), pp.182-189. https://doi.org/10.1111/j.1745-6584.1985.tb02791.x
  25. Kim, J., Choo, H., Lee, C., and Lee, W. (2014), "Estimation of Hydraulic Conductivity of Coarse Grains Using Geoelectric Measurements", KGS Fall National Conference 2014, pp.431-438.
  26. Kim, J. H., Yoon, H. K., Cho, S. H., Kim, Y. S., and Lee, J. S. (2009), "Four electrode resistivity probe for porosity evaluation", Geotechnical Testing Journal, 34(6), pp.668-675.
  27. Kim, J., Yoon, H., Choi, Y., and Lee, J. (2009), "Porosity Evaluation of Offshore Soft Soils by Electrical Resistivity Cone Probe", Journal of the Korean Geotechnical Society, 25(2), pp.45-54.
  28. Klein, K.A. and Santamarina, J.C. (2003), "Electrical Conductivity in Soils: Underlying Phenomena", Journal of Environmental and engineering geophysics, 8(4), pp.263-273. https://doi.org/10.4133/JEEG8.4.263
  29. Loudon, A. G. (1962), "The Computation of Permeability from Simple Soil Tests", Geotechnique, 3, pp.165-183.
  30. Mitchell, J. K. and Soga, K. (2005), Fundamentals of Soil Behavior, John Wiley & Sons.
  31. Oh, T. M., Cho, G. C., and Lee, C. H. (2014), "Effect of Soil Mineralogy and Pore-water Chemistry on the Electrical Resistivity of Saturated Soils", Journal of Geotechnical and Geoenvironmental Engineering, 140(11), pp.06014012-06014012-5. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001175
  32. Olson, R. E. and Daniel, D. E. (1981), "Measurement of the Hydraulic Conductivity of Fine-grained Soils", Permeability and Groundwater Contaminant Transport, ASTM STP 746, T. F. Zimmie, C. O. Riggs, Eds., American Society for Testing and Materials, 18-64.
  33. Pfannkuch, H. O. (1972), "On the Correlation of Electrical Conductivity Properties of Porous Systems with Viscous Flow Transport Coefficients", Developments in Soil Science, 2, pp.42-54. https://doi.org/10.1016/S0166-2481(08)70527-0
  34. Rinaldi, V. A. and Cuestas, G. A. (2002), "Ohmic Conductivity of a Compacted Silty Clay", Journal of Geotechnical and Geoenvironmental Engineering, 128(10), pp.824-835. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(824)
  35. Salem, H. S. and Chilingarian, G. V. (1999), "The Cementation Factor of Archies's Equation for Shaly Sandstone Reservoirs", Journal of Petroleum Science and Engineering, 23, pp.83-99. https://doi.org/10.1016/S0920-4105(99)00009-1
  36. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G. (2005), "Electrical Resistivity Survey in Soil Science: a Review", Soil & Tillage Research, 83(2), pp.173-193. https://doi.org/10.1016/j.still.2004.10.004
  37. Santamarina, J. C., Klein, K. A., and Fam, A. M. (2001), Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring, J. Wiley & Sons, Chichester, England.
  38. Santamarina, J. C. and Fratta, D. (2005), Discrete Signals and Inverse Problems: An Introduction for Engineers and Scientists, J. Wiley & Sons, Chichester, England.
  39. Urish, D. W. (1981), "Electrical Resistivity-hydraulic Conductivity Relationships in Glacial Outwash Aquifers", Water Resources Research, 17(5), pp.1401-1408. https://doi.org/10.1029/WR017i005p01401
  40. Yoon, G. L. and Park, J. B. (2001), "Sensitivity of Leachate and Fine Contents on Electrical Resistivity Variations of Sandy Soils", Journal of Hazardous Materials B84, pp.147-161.
  41. Yoon, G., Ryu, C., Lee, Y., Yoon, C., and Lee, Y. (1998), "A Study on the Correlation between Electrical Resistivity and Properties of Contaminated Soils", Journal of the Korean Geotechnical Society, 14(2), pp.79-92.
  42. Zhang, H. L. and Han, S. J. (1996), "Viscosity and Density of Water + Sodium Chloride + Potassium Chloride Solutions at 298.15 K", Journal of Chemical and Engineering Data, 41(3), pp.516-520. https://doi.org/10.1021/je9501402