• Title/Summary/Keyword: sand liquefaction

Search Result 171, Processing Time 0.02 seconds

A State of the Art for the Vibrated Crushed-stone Compaction Pile (진동쇄석다짐말뚝공법의 기술적 수준)

  • Choi, Yong-Kyu;Kim, Won-Cheul;Jung, Chang-Kyu;Lee, Min-Hee;Kim, Tae-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.65-77
    • /
    • 2002
  • Based from the results of various field and laboratory tests, it was determined that VCCP(Vibrated Crushed-stone Compaction Pile) Method is more effective compared to SCP(Sand Compaction Pile) Method. VCCP method effectively increases soil bearing capacity and reinforces soil and slopes, prevents liquefaction, enhances drainage. But when it comes to the engineering design these factors are not considered, instead designs are performed using practical methods and equations. Furthermore, this method is very economical since crushed stone can be used instead of sand and it can be also used in off-shore construction. In this paper, it will be synthetically considered technical state at the present time, research object after this and necessity of research for VCCP Method.

  • PDF

Behaviour of Nak-dong River Sand on Cyclic Stress History (낙동강 모래의 반복응력이력에 의한 거동)

  • 김영수;박명렬;김병탁;이상복
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.295-302
    • /
    • 2000
  • Earthquakes not only produce additional load on the structures and underlying soil, but also change the strength characteristics of the soil. Therefore, in order to analyze soil structures for stability, the behaviour after earthquake must be considered. In this paper, a series of cyclic triaxial tests and monotonic triaxial tests were carried out to investigate the undrained shear strength and liquefaction strength characteristics of Nak-Dong River sand soils which were subjected to cyclic loading. The sample was consolidated in the first stage and then subjected to stress controlled cyclic loading with 0.1Hz. After the cyclic loading, the cyclic-induced excess pore water pressure was dissipated by opening the drainage valve and the sample was reconsolidated to the initial effective mean principal stress(p/sub c/'). After reconsolidation, the monotonic loading or cyclic loading were applied to the specimen. In the results, the undrained shear strength and liquefaction strength characteristics depended on the pore pressure ratio(Ur=U/p/sub c/'). The volume change following reconsolidation can be a function of cyclic-induced excess pore water pressure and the maximum double amplitude of axial strain.

  • PDF

Evaluation of Liquefaction Strength Based on Korean Earthquake Magnitude (국내 발생 지진규모를 고려한 액상화저항강도 산정)

  • 신윤섭;박인준;최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.307-317
    • /
    • 1999
  • The purpose of this study is to utilize conventional procedures for evaluation of liquefaction potential and to compare the results obtained by modified detailed method based on Korean earthquake magnitude (M=6.5). Liquefaction potential is assessed by comparing liquefaction strength of soil and cyclic shear stress generated in the soil layers during earthquakes. The cyclic shear stress is computed from the earthquake response analysis, and liquefaction strength of soil is evaluated by using results from cyclic triaxial tests. The cyclic triaxial tests are performed on many different conditions of sample ; relative densities(50%, 60%, and 70%), initial effective confining pressures (70kPa, 100kPa, and 150kPa), and fine contents(10%, 20%, and 30%). From the result of comparing the conventional procedure with the modified detailed method, it is found that the modified detailed method tends to evaluate larger safety factor against liquefaction in the weak sand site$(FS \leq1.5)$. Therefore in this case, it is suggested that liquefaction potential should be evaluated by using the modified detailed method based on cyclic triaxial tests. It is also found that in modified detailed method based on earthquake magnitude 6.5, critical depth where liquefaction can be generated is around 15m from the ground surface.

  • PDF

Utilization of carrageenan as an alternative eco-biopolymer for improving the strength of liquefiable soil

  • Regina A. Zulfikar;Hideaki Yasuhara;Naoki Kinoshita;Heriansyah Putra
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.221-230
    • /
    • 2023
  • The liquefaction of soil occurs when a soil loses strength and stiffness because of applied stress, such as an earthquake or other changes in stress conditions that result in a loss of cohesion. Hence, a method for improving the strength of liquefiable soil needs to be developed. Many techniques have been presented for their possible applications to mitigate liquefiable soil. Recently, alternative methods using biopolymers (such as xanthan gum, guar gum, and gellan gum), nontraditional additives, have been introduced to stabilize fine-grained soils. However, no studies have been done on the use of carrageenan as a biopolymer for soil improvement. Due to of its rheological and chemical structure, carrageenan may have the potential for use as a biopolymer for soil improvement. This research aims to investigate the effect of adding carrageenan on the soil strength of treated liquefiable soil. The biopolymers used for comparison are carrageenan (as a novel biopolymer), xanthan gum, and guar gum. Then, sand samples were made in cylindrical molds (5 cm × 10 cm) by the dry mixing method. The amount of each biopolymer was 1%, 3%, and 5% of the total sample volume with a moisture content of 20%, and the samples were cured for seven days. In terms of observing the effect of temperature on the carrageenan-treated soil, several samples were prepared with dry sand that was heated in an oven at various temperatures (i.e., 20℃ to 75℃) before mixing. The samples were tested with the direct shear test, UCS test, and SEM test. It can increase the cohesion value of liquefiable soil by 22% to 60% compared to untreated soil. It also made the characteristics of the liquefiable increase by 60% to 92% from very loose sandy soil (i.e., ϕ=29°) to very dense sandy soil. Carrageenan was also shown to have a significant effect on the compressive strength and to exceed the liquefaction limit. Based on the results, carrageenan was found to have the potential for use as an alternative biopolymer.

Analysis of Dynamic Earth Pressure on Piles in Liquefiable Soils by 1g Shaking Table Tests (1g 진동대 실험을 이용한 액상화 지반에 근입된 말뚝에 작용하는 동적 토압 분석)

  • Han, Jin-Tae;Choi, Jung-In;Kim, Sung-Hwan;Yoo, Min-Taek;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.87-98
    • /
    • 2011
  • In this study, the magnitude and phase variation of dynamic earth pressure acting on a pile in liquefiable soils were analyzed using a series of 1g shaking table tests. In the case of a pile in dry sand, the value of the dynamic earth pressure was the highest near the surface due to the inertia force of the upper load on the pile and it decreased as the depth of the pile got lower. On the other hand, for a pile in liquefiable sand, the magnitude and shape of the dynamic earth pressure were similar to those of the excess pore pressure and was largely affected by the deformation of soils. Furthermore, the inertia force of the upper load and the dynamic earth pressure acted in opposite directions in cases of dry sand and saturated sand where low excess pore pressure had developed. However, after liquefaction, those force components near surface acted unfavorably in the same direction. Finally, the Westergaard’s solution was modified and proposed as a method to evaluate the magnitude of dynamic earth pressure acting on a pile during liquefaction.

The Settlement Behavior Analysis of SCP of Multi-Layered Ground in Incheon (인천지역 다층지반에 시공된 SCP의 침하거동 분석)

  • Yoon, Won-Sub;Kim, Jong-Kook;Park, Sang-Jun;Cho, Chul-Hyun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1042-1050
    • /
    • 2008
  • In this study, SCP method was used by purpose to improve loose sand and soft clay that is drilled Sand Compaction Pile in underground. Settlement behavior of field analyzed through SCP method. When sand Compaction Pile drilled in clay, forming composite ground that foundation and Sand Compaction Pile behavior. According to SCP method can expect bearing capacity improvement, Settlement reduction, lateral flow protection. SCP increase the consolidation settlement of ground and it reduce settlement for that purpose increase liquefaction resistance, lateral Resistance. Because SCP had been widely used for sand. Area of Inchon-A by sand compose clay and silt to upper Ground and compose soft clay to under ground. After pre-loading, it measured settlement by extensometer and settlement extensometer that purpose of ground improvement with 13% in replacement ratio. The result analyzed settlement behavior is similar to Multi-layered Ground that it happened to elastic settlement at upper ground and to consolidation settlement at under ground.

  • PDF

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

Numerical Analysis of Dynamic Centrifuge Model Tests Using an Effective Stress Model (유효응력모델을 이용한 동적 원심모형실험의 수치해석)

  • Park Sung-Sik;Kim Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • In this study an effective stress numerical procedure is used to assess the results of dynamic centrifuge tests under high effective stress. The centrifuge models consist of loose Nevada sand with an initial vertical effective stress of 380kPa at depth, and they are modeled as a one-dimentional soil column. Liquefaction occurred up to 37m or 22m at depth, and the onset of liquefaction triggering was opposite to the conventional liquefaction evaluation procedure. In other words, liquefaction occurs first at the top and propagates downward as shaking continues. The results observed in centrifuge tests are reasonably predicted by the effective stress model. It is noted that the degree of initial saturation and additional densification at depth arising from the application of the high acceleration field play a key role in capturing the results of dynamic centrifuge tests.

Assessment of Liquefaction Potential on Non-Plastic Silty Soil Layers Using Geographic Information System(GIS) and Standard Penetration Test Results (지리정보시스템 및 표준관입시험 결과를 이용한 비소성 실트질 지반의 액상화 평가)

  • Yoo, Si-Dong;Kim, Hong-Taek;Song, Byung-Woong;Lee, Hyung-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.5-14
    • /
    • 2005
  • In the present study, the liquefaction potential in the area of the Incheon international airport was assessed by applying the data of both standard penetration tests and laboratory tests to the modified Seed & Idriss method. The analysis was performed against the non-plastic silty soil layer and silty sand soil layer existing within the depth of 20m and under the ground water level, having the standard penetration value(N) of below 20. Also, each set of data was mapped using the GIS(Geographic Information System) and the safety factor against the liquefaction potential ($FS_{liquefaction}$) was obtained by overlapping those layers. Throughout the analysis, it was found that there exists a potential hazard zone for the liquefaction, showing partially that the safety factor against the liquefaction potential is 1.0 to 1.5 below the standard safety factor criterion. It is further thought to be necessary that the liquefaction potential for the corresponding hazard zone be additionally assessed in detail.

  • PDF

세립분 함유량에 따른 새만금준설토의 액상화 특성에 관한 연구

  • Kim, You-Seong;Lee, Soo-Guen;Ko, Hyoung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1458-1465
    • /
    • 2010
  • A lot of dredging and reclaming projects are recently under way in Korea for the efficient use of limiting land space. Saemanguem area is special case of reclaiming by dredged soil. In case of a confined disposal of dredged soils by a pump dredger, generally coarse grained soils are separated from fines with dropping at the near part of the pump dredger. This kind of seperation of fine contents could be a factor of liquefaction by earthquake. In Korea, recently, earthquakes with magnitude of 3.0 or higher are distinctively increasing in 1990. In this study, cyclic shear characterics of Saemanguem Dredged sand depending on fine content were analyzed. A series of undrained cyclic triaxial test with cyclic stress ratio ($\sigma_d/{2\sigma_{{\upsilon}c}}'$) were performed on both isotropic consolidated specimen and sand with fine contents of 0%, 5%, 15%, 30%, 40% under the effective vertical stress of 100kPa and 50% and 60%, 70% of relative density for fine content of 0%, respectively. In the test results, cyclic shear strength increased by increasing of cyclic stress ratio($\sigma_d/{2\sigma_{{\upsilon}c}}'$) with increasing the relative density at the same number of cyclic under the effective confining pressure of 100kPa. It is almost highest the double amplitude(DA) 1%, 3%, 5%, 7.5% and 10% at fine content of 15% between Cyclic stress ratio($\sigma_d/{2\sigma_{{\upsilon}c}}'$) value at cyclic number five and fine content. Number of cyclic is 30 under the effective vertical stress of 100kPa, 70% of relative density for fine content of 15%. when the cyclic stress ratio at each relative density was compared at cyclic number five, the double amplitude(DA) 1%, 3%, 5%, 7.5% and 10%, and the pore-pressure ratio (${\Delta}u/{\sigma'}_c$) 0.95 value were compared; under the relative density of 70% and the effective confining pressure of 100kPa. The pore-pressure ratio (${\Delta}u/{\sigma'}_c$) 0.95 value showed a similar trend to the double amplitude (DA) 5% line.

  • PDF