• Title/Summary/Keyword: sand foundation

Search Result 261, Processing Time 0.023 seconds

Characteristics of the Lateral Resistance of Pile according to the Lateral Loading Rate in Dense Sand (조밀한 모래지반에서 수평재하속도에 따른 말뚝의 수평저항 특성)

  • Gichun Kang;Hyejeong Park;Seong-kyu Yun;Jiseong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.97-103
    • /
    • 2023
  • Recently, research on the lateral resistance of pile foundations has been actively conducted. In experimental studies on the lateral resistance of pile foundations, displacement control or load control methods are used. However, in the case of the displacement control method, the lateral resistance of the pile varies depending on the rate of the load applied to the pile. Therefore, this study seeks to determine the change in lateral resistance of pile foundations according to lateral loading rate through model experiments. The experimental results showed that the lateral resistance of the pile tended to decrease as the lateral loading rate applied to the pile head increased. In order to confirm this, a model experiment of the side change of the ground and pile according to the loading rate was additionally conducted. Through inverse analysis, the change in the depth of the rotation point according to the lateral loading rate was identified. Through the change in the lateral resistance of the pile foundation and the depth of the rotating point according to the lateral loading rate, it was proposed to test the loading rate within 1.5 mm/min during the lateral loading test of the pile.

A Study on the Prevention of Liquefaction Damage of the Sheet File Method Applicable to the Foundation of Existing Structures Using the 1-G Shaking Table Experiment (1-G 진동대 실험을 이용한 기존 구조물 기초에 적용 가능한 시트파일 공법의 액상화 피해 방지에 관한 연구)

  • Jongchan Yoon;Suwon Son;Junhyeok Park;Junseong Moon;Jinman Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.7
    • /
    • pp.5-14
    • /
    • 2023
  • Recently, earthquakes have occurred frequently in worldwide. These earthquakes cause various forms of natural and physical damage. In particular, liquefaction in which the ground shows liquid-like behavior causes great damage to the structure. Accordingly, various liquefaction damage reduction methods are being studied and developed. Therefore, in this study, a method of reducing liquefaction damage in the event of an earthquake applicable to existing structures was studied using the sheet pile method. The 1-G Shaking table test was performed and the ground was constructed with Jumunjin standard sand. A two-story model structure was produced by applying the similitude law, and the input wave applied a sine wave with an acceleration level of 0.6 g and a frequency of 10 Hz. The effect of reducing structure damage according to various embedded depth ratio was analyzed. As a result of the study, the structure settlement when the ground is reinforced by applying the sheet pile method is decreased by about 71% compared to when the ground is not reinforced, and the EDR with minimum settlement is "1". In addition, as the embedded depth ratio is increased, the calculation of the pore water pressure in the ground tends to be delayed due to the sheet pile. Based on these results, the relationship with structural settlement according to the embedded depth ratio is proposed as a relational equation with the graph. The results of this study are expected to be used as basic data in developing sheet pile methods applicable to existing structures in the future.

Estimation of Non-linear Strength and Stiffness for Silty Sands (실트질 모래지반의 비선형 강도 및 강성도 추정법)

  • Lee Kyung-Sook;Kim Hyun-Ju;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2006
  • In general typically granular soils contain a certain amount of fines. It is also widely recognized that foundation soils under working loads show highly non-linear behavior from very early stages of loading. In the present study, a series of laboratory tests with sands of different silt contents are conducted and methods to assess strength and stiffiness characteristics are proposed. Modified hyperbolic stress-strain model is used to analyze non-linearity of silty sands in terms of non-linear Degradation parameters f and g as a function of silt contents and Relative density Dr. Stress-strain curves were obtained from a series of triaxial tests on sands containing different amounts of silt. Initial shear modulus, which is used to normalize Degradation modulus of silty sands, was determined from resonant column test results. From the laboratory test results, it was observed that, as the Relative density increases, values of f decrease and those of g increase. In addition, it was found that values of f and g increase and decrease respectively as a Skeleton void ratio $(e_{sk})$ increases.

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

Settlement Instrumentation of Greenhouse Foundation in Reclaimed Land (간척지 온실 기초의 침하량 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Yu, In Ho;Lee, Jong-Won;Lee, Si Young;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • This study examined the settlement of a 1-2W type greenhouse using a timber pile, which was recently established on Gyehwa-do reclaimed land, in order to obtain base data for the construction of a greenhouse on reclaimed land. The results of this study are as follows. foundation and timber pile increased over time, irrespective of the interior and exterior of the upon investigation of the ground, it was confirmed that there was no soft rock stratum (bedrock), and that a sedimentary stratum existed under the fill deposit, which is estimated to have been reclaimed during the site renovation. It was also found that a weathered zone was located under the fill deposit and sedimentary stratum, and that the soil texture of the entire ground floor consisted of clay mixed with sand, silty clay, and granite gneiss, in that order, regardless of boreholes. In addition, the underground water level was 0.3m below ground, regardless of boreholes. Despite a slight difference, the settlement of the greenhouse or measurement sites (channels). With regard to the pillar inside the greenhouse, except in the case of CH-2, the data at a site located on the side wall of the greenhouse (wind barrier side) indicated vibrations of relatively larger amplitude. Moreover, the settlement showed a significant increase during a certain period, which was subsequently somewhat reversed. Based on these phenomena, it was verified that the settlement range of each site in the interior and exterior of the greenhouse was between 1.0 and 7.5mm at this time, except in the case of CH-1. The results of the regression analysis indicated good correlation, with the coefficient of determination by site ranging between 0.6362 and 0.9340. Furthermore, the coefficient of determination ranged between 0.6046 and 0.8822 on the exterior of the greenhouse, which is lower than inside the greenhouse, but still indicates significant correlation.

A Study on the Construction method of Stamped earthen wall (판축토성(版築土城) 축조기법(築造技法)의 이해(理解) - 풍납토성(風納土城) 축조기술(築造技術)을 중심(中心)으로 -)

  • Shin, Hee-kweon
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.102-115
    • /
    • 2014
  • The stamped earth method is a typical ancient engineering technique which consists of in-filling wooden frame with layers of stamped earth or sand. This method has been universally used to construct earthen walls and buildings, etc. The purpose of this article is to understand the construction method and principles of the stamped earthen wall through analysis of various construction techniques of Pungnaptoseong Fortress(Earthen Fortification in Pungnap-dong). First of all, the ground was leveled and the foundations for the construction of the earthen wall were laid. The underground foundation of the earthen walls was usually constructed by digging into the ground and then in-filling this space with layers of mud clay. Occasionally wooden posts or paving stones which may have been used to reinforce the soft ground were driven in. The method of adding layers of stamped earth at an oblique angle to either side of a central wall is the most characteristic feature of Pungnaptoseong Fortress. Even though the traces of fixing posts, boards, and the hardening of earth - all signatures of the stamped earth technique - have not been identified, evidence of a wooden frame has been found. It has also been observed that this section was constructed by including layers of mud clay and organic remains such as leaves and twigs in order to strengthen the adhesiveness of the structures. The outer part of the central wall was constructed by the anti-slope stamped earth technique to protect central wall. In addition a final layer of paved stones was added to the upper part of the wall. These stone layers and the stone wall were constructed in order to prevent the loss of the earthen wall and to discharge and drain water. Meanwhile, the technique of cementing with fire was used to control damp and remove water in stamped earth. It can not be said at present that the stamped earth method has been confirmed as the typical construction method of Korean ancient earthen walls. If we make a comparative study of the evidence of the stamped earth technique at Pungnaptoseong Fortress with other archeological sites, progress will be made in the investigation of the construction method and principles of stamped earthen wall.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

A Diagnostic Analysis on the Conservation Status for the Maintenance of the Front Wall of Jungjeongdang Area of Dodong-Seowon (도동서원 중정당 전면 담장의 보수를 위한 진단학적 보존 상태 분석)

  • Kim, Kyu-Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study was conducted to analyze the conservation status by diagnostical methology for the front wall of Jungjeongdang area of Dodong-Seowon. The study was carried out as photogrammetry and mapping - investigation of materials and conservation status - analysis and evaluation of conservation status. The results are as follows. First, in the case of photogrammetry, each photograph was took in superposition, and the distortions of the photographs were corrected and synthesized. Based on this, actual survey drawings of the wall were prepared. Second, in case of material and conservation status, the wall is in the form of Wapyeondam and the material of the head part are tile, mud and lime, and the material of the body part are mud and tile. The mud was mixed with gravel, sand and straw. At the base part, amorphous natural stones and mud were used. The remarkable damage that appears on the wall is erosion of the base part, and some disintegration appears in the body part. There is a biological patina on the head and the base, and vegetation such as lichen is concentrated on the partial body. There was superficial deposit in the head part, and some tiles were broken or lost. Deep fissures are intensively located in some part of the eastern wall. Third, in the case of analysis and evaluation of the conservation status, it is considered that by the erosion of the foundation part and the disintegration of the body part, there is a possibility that physical damage will continue to be applied to the wall, so immediate action is necessary. The distribution of biological patina and vegetation does not appear to cause great problems in the wall, but it is necessary to reduce it in view of aesthetic problems. A cracked or missing tile would need to be replaced, and deep cracks in the eastern wall appear to have been caused by subsidence, and reinforcement of the underground is necessary to prevent further damage.