DOI QR코드

DOI QR Code

Settlement Instrumentation of Greenhouse Foundation in Reclaimed Land

간척지 온실 기초의 침하량 검토

  • Choi, Man Kwon (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Yun, Sung Wook (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Yu, In Ho (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Lee, Jong-Won (Institute of Agriculture Science & Technology, Kyungpook National Univ.) ;
  • Lee, Si Young (Dept. of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Yoon, Yong Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ(Institute of Agriculture and Life Science))
  • 최만권 (국립원예특작과학원 시설원예연구소) ;
  • 윤성욱 (경상대학교 농업생명과학연구원) ;
  • 유인호 (국립원예특작과학원 시설원예연구소) ;
  • 이종원 (경북대학교 농업과학기술연구소) ;
  • 이시영 (농촌진흥청 농업공학부 에너지환경공학과) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2015.04.09
  • Accepted : 2015.05.06
  • Published : 2015.06.30

Abstract

This study examined the settlement of a 1-2W type greenhouse using a timber pile, which was recently established on Gyehwa-do reclaimed land, in order to obtain base data for the construction of a greenhouse on reclaimed land. The results of this study are as follows. foundation and timber pile increased over time, irrespective of the interior and exterior of the upon investigation of the ground, it was confirmed that there was no soft rock stratum (bedrock), and that a sedimentary stratum existed under the fill deposit, which is estimated to have been reclaimed during the site renovation. It was also found that a weathered zone was located under the fill deposit and sedimentary stratum, and that the soil texture of the entire ground floor consisted of clay mixed with sand, silty clay, and granite gneiss, in that order, regardless of boreholes. In addition, the underground water level was 0.3m below ground, regardless of boreholes. Despite a slight difference, the settlement of the greenhouse or measurement sites (channels). With regard to the pillar inside the greenhouse, except in the case of CH-2, the data at a site located on the side wall of the greenhouse (wind barrier side) indicated vibrations of relatively larger amplitude. Moreover, the settlement showed a significant increase during a certain period, which was subsequently somewhat reversed. Based on these phenomena, it was verified that the settlement range of each site in the interior and exterior of the greenhouse was between 1.0 and 7.5mm at this time, except in the case of CH-1. The results of the regression analysis indicated good correlation, with the coefficient of determination by site ranging between 0.6362 and 0.9340. Furthermore, the coefficient of determination ranged between 0.6046 and 0.8822 on the exterior of the greenhouse, which is lower than inside the greenhouse, but still indicates significant correlation.

본 연구에서는 간척지 내에 온실을 시공할 경우, 온실 설계의 기초자료로 활용하기 위하여 최근 나무말뚝 기초를 사용하여 완공한 계화도 간척지의 1-2W형 온실을 대상으로 온실기초의 침하량을 계측하고 검토하였다. 그 결과는 다음과 같다. 지반조사 결과, 기반암인 연암층은 확인되지 않았으며 부지 조성 당시 매립한 것으로 추정되는 매립층과 그 하부에 퇴적층이 존재하는 것으로 조사되었다. 그리고 매립층과 퇴적층 하부에 풍화대가 존재하는 것으로 조사되었다. 전체 지반층의 토성은 시추공에 관계없이 주로 점토 섞인 모래, 실트질 모래, 실트질 점토 및 화강편마암 순으로 구성되어 있었다. 지하수위도 시추공에 관계없이 지반에서 0.3m 아래에 있는 것으로 나타났다. 온실기초 및 나무말뚝의 침하량은 전체적으로 볼 때, 온실 내 외부나 계측지점(채널)에 관계없이 침하량에는 다소 차이가 있지만, 시간의 경과와 함께 침하량이 증가하고 있는 것으로 나타났다. 그리고 온실 내부 기둥의 경우, CH-2는 좀 예외적이긴 하지만, 온실 측벽(방풍벽 측)에 있는 지점의 데이터가 상대적으로 큰 진폭으로 흔들리는 것은 알 수 있었다. 또한 특정 시기에 침하량이 상대적으로 크게 증가한 후, 어느 정도 침하량이 회복 되는 현상을 볼 수 있었다. 이와 같은 현상들을 포함하여 CH-1을 제외하고 현 시점에서 온실 내 외부 전체의 지점별(CH-2~CH-10) 침하량은 1.0~7.5mm 정도의 범위에 있는 것으로 나타났다. 회귀 분석한 결과 결정계수는 지점별로 0.6362~0.9340까지의 범위로서 상관관계가 높은 것으로 나타났다. 그리고 온실외부의 경우는 0.6046~0.8822로서 온실내부 보다는 다소 낮지만, 상관관계가 있는 것으로 나타났다.

Keywords

References

  1. Choi, M.K., S.W. Yun, H.T. Kim, S.Y. Lee, and Y.C. Yoon. 2014a. Field survey on the maintenance status og greenhouse in Korea. Protected Hort. Plant Fac. 23(2):148-157 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.2.148
  2. Choi, M.K., S.W. Yun, H.T. Kim, S.Y. Lee, and Y.C. Yoon. 2014b. Current status on the greenhouse foundation. J. Agric. & Life Sci. 48(3):251-260 (in Korean). https://doi.org/10.14397/jals.2014.48.3.251
  3. http://blog.daum.net/cronose88/369)
  4. http://www.mafra.go.kr
  5. http://www.naver.com
  6. Kang, Y.S., Y.C. Yoon. C.S. Song, S.Y. Lim. 2014. Uplift resistance of wooden pile using soil box according to soil type. J. Agric. & Life Sci. 48(1):173-182 (in Korean). https://doi.org/10.14397/jals.2014.48.1.173
  7. Kang, Y.M., J.U. Ku, S.K. Kwon, B.J. Cho, S.J. Cho, and E. Hwang. 1992. Reclaimed land engineering. ed. Hyangmunsa. Seoul, Korea. p. 13-24. (in Korean).
  8. Kim, H.T., Y.M. Son, and S.O. Jun. 2007. Development method of the future agricultural complex in reclaimed land. ed. Ministry of Agriculture and Forestry and Korea Rural Community Corporation, Gwacheon and Uiwang, Gyeonggi, Korea (in Korean).
  9. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2014a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2013. Sejong, Korea (in Korean).
  10. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2014b. Cultivation status of floricultural crop in 2013. Sejong, Korea (in Korean).
  11. Park, S.D., U.S. Hwang, J.I. Sung, K.S. Chae, C.H. KIm, G.Y. Jun, Y.M. Son, and J.D. Song. 2009. A study on the effective agricultural utilization of reclaimed land. ed. Korea Rural Economic Institute, Seoul, Korea. p. 1-6 (in Korean).
  12. Rural Development Administration(RDA). 2012. Symposium for development direction of greenhouse adaptive in reclaimed land. ed. RDA, Suwon, Korea. p. 4-30 (in Korean).
  13. The Korean Society for Bio-Environment Control(KSBEC). 2009. Basic planning for development of greenhouse complex in Taean. ed. Clean Tech Consultant, Seoul, Korea. p. 50-52 (in Korean).
  14. Yun, S.W., M.K. Choi, C. Yu, J.W. Lee, S.Y. Lee, and Y.C. Yoon. 2013. Estimation of design load for greenhouse applicable in coastal reclaimed lands. J. Agric. & Life Sci. (47(3):123-131 (in Korean).