• Title/Summary/Keyword: salt concentrations

Search Result 705, Processing Time 0.036 seconds

Use of Dietary Salt to Rainbow Trout (Oncorhynchus mykiss) for Increasing Seawater Adaptability (무지개송어(Onchorhynchus mykiss)의 해수 적응 능력 개선을 위한 식염사료의 적용)

  • Kim, Pyong-Kih;Kim, You-Hee;Jeon, Joong-Kyun
    • Journal of Aquaculture
    • /
    • v.18 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • One 30-day feeding trial was conducted to examine the effects of dietary salt on seawater adaptability of rainbow trout (Onchorhynchus mykiss) fed three experimental diets containing 0% (control), 4% and 8% salt. The experimetal period included 30 days of feeding trial in freshwater, 3 days of the step by step seawater acclimation with-out feeding diets, and 21 more days of seawater adaptation period (not with all experimental fish) with feeding the basal diet. Growth rates from triplicate groups were determined fur 30 days of feeding trial. Blood samples were taken at the begining and at the end of feeding trial, and 3 times (on 1st, 4th and 8th day) of the seawater adaptation period. Daily survival rates of duplicate groups from three experimetal treatments were recorded for 21 days of the seawater adaptation period. Total average initial and final fish weight were $149.5{\pm}7.6\;and\;187.1{\pm}7.6g$. Feed efficiency of fish fed diets containing 4% and 8% salt were significantly better than those of fish fed the control diet. Average cumulative survival rates were 72, 80 and 88% from the control, 4% and 8% salt diets, respectively. Pulse rate per minutes decreased with dietary salt level. Serum $Na^+\;and\;Cl^-$ concentrations of fish fed 4% and 8% salt diets were significantly higher than those of fish fed the control diet (P<0.05), however, the concentrations were stabilized after 8 days of seawater adaptation. Serum cortisol, glucose, cholesterol and tryglyceride concentrations, and the osmorality of fish decreased with dietary salt level, these values were significantly lower than those of fish fed the control diet. These results indicated that the dietary supplementation of salt could have advantages for seawater adaptability of rainbow trout.

Influence of the pH and Salt Concentrations on Physicochemical Properties of Pork Myofibrillar Protein Gels Added with Cornstarch

  • Lee, Chang Hoon;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.254-261
    • /
    • 2020
  • The aim of this study was to evaluate quality characteristics of pork myofibrillar protein (MP) added with cornstarch as affected by different pH values and salt cocnentrations. MP mixtures were prepared with three different pH values (pH 6.00, 6.25, and 6.50) and three different salt concentrations (0.15, 0.30, and 0.45 M). Cooking yield (CY), gel strength, viscosity, and scanning electron microscopy were measured to evaluate characteristics of MPs. CYs of MPs with cornstarch at above pH 6.25 or salt 0.30 M were increased compared to those at pH 6.00 or salt 0.15 M. However, gel strengths of MPs at salt 0.45 M were higher than those at salt 0.30 M. In microstructure analysis, MP gels with increasing pH value and salt concentration showed compact and uniform structure. Thus, MP gels with pH 6.25 and salt concentration of 0.30 M would be better for manufacturing meat products containing cornstarch to increase their water holding ability.

Growth of Lactic Acid Bacteria and Quality Characteristics of Baechu Kimchi Prepared with Various Salts and Concentration (소금의 종류와 침지 농도에 따른 배추김치의 젖산균의 생육과 품질 특성)

  • Kim, Da-Mee;Kim, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.29 no.3
    • /
    • pp.286-297
    • /
    • 2014
  • This study was conducted to evaluate the growth of lactic acid bacteria and quality characteristics of Baechu kimchi prepared with four types of salt (Solar salt, Flower salt, Hanju salt, and Roasted salt) at two different concentrations (10, 15%) during storage. The quality characteristics of kimchi were examined by investigating acid production, growth of lactic acid bacteria, sensory properties, salinity, texture, and color characteristics. Baechu kimchi was fermented for 18 days at $10^{\circ}C$. The pH and total acidity did not change during storage according to type and concentration of salt. Growth of lactic acid bacteria was not affected by type of salt, whereas it was inhibited at 15% salt concentration after 9 days of fermentation. In the quantitative descriptive analysis of sensory properties, kimchi prepared with 10% salt showed significantly higher scores in term of overall acceptability (p<0.05). Meanwhile, there was no significant difference by type of salt. For texture characteristics, hardness of kimchi prepared with 10% salt was significantly higher than that with 20% salt. For color characteristics, L value (brightness) and b values (yellowness) of kimchi prepared with 10% salt increased during fermentation, whereas a value (redness) did not change by type and concentration of salt. The results of this study show that there were no considerable differences in quality characteristics of Baechu kimchi prepared with various types and concentrations of salt. However, Solar salt resulted in more favorable sensory properties and salinity of kimchi than any other types. Further, kimchi prepared with 10% salt showed significantly higher scores in terms of overall acceptability, growth of lactic acid bacteria, salinity, texture, and color characteristics.

A Modeling Study on Aerosol Property Changes due to Sea-Salts (해염성분에 의한 에어로솔 물성변화 모사연구)

  • 김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.113-120
    • /
    • 2000
  • Effects of sea-salts on the properties of aerosol collected in a coastal region were studied by applying a gas-particle equilibrium model SCAPE to the measurement data from Korea Cheju Island in summer 1994. It was found that the observed higher ammonium concentrations in fine particles (PM2.5) than in TSP were caused by forced evaporation of ammonium in coarse fraction of aerosol by sea-salts and the degree of evaporation was quantified through an application of SCAPE. By subtracting the sea-salt fraction from the measured concentra-tions the changes of aerosol property were also studied. The concentrations of nitrate at both TSP and PM2.5 decreased when alkaline sea-salt fraction was removed from the measured data. Estimates of aerosol acidity increased for most samples with sea salt loadings, However in some cases with high mass fractions of sea-salt components the aerosol acidity of PM2.5 decreased slightly. This is though to be related with the formation of solid salt with the removal of sea-salts.

  • PDF

Salt-Induced Protein Precipitation in Aqueous Solution: Single and Binary Protein Systems

  • Kim, Sang-Gon;Bae, Young-Chan
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.53-61
    • /
    • 2003
  • A molecular-thermodynamic model is developed for the salt-induced protein precipitation. The protein molecules interact through four intermolecular potentials. An equation of state is derived based on the statistical mechanical perturbation theory with the modified Chiew's equation for the fluid phase, Young's equation for the solid phase as the reference system and a perturbation based on the protein-protein effective two body potential. The equation of state provides an expression for the chemical potential of the protein. In a single protein system, the phase separation is represented by fluid-fluid equilibria. The precipitation behaviors are simulated with the partition coefficient at various salt concentrations and degree of pre-aggregation effect for the protein particles. In a binary protein system, we regard the system as a fluid-solid phase equilibrium. At equilibrium, we compute the reduced osmotic pressure-composition diagram in the diverse protein size difference and salt concentrations.

Development of WRAP-SALT for Quantitative Analysis of Water Supply Capabilities considering Water Quality (수질을 고려한 수자원 공급의 정량적 분석을 위한 WRAP-SALT 개발)

  • Lee, Chi-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.58-58
    • /
    • 2011
  • The Texas Commission on Environmental Quality(TCEQ) WAM(Water Availability Modeling) System consists of the generalized Water Rights Analysis Package(WRAP) river/reservoir system water management simulation model, 22 sets of WRAP hydrology and water rights input files for the 23 river basins of Texas, geographic information system tools, and other supporting databases. The WRAP/WAM modeling system, as routinely applied since the late 1990s, has not included consideration of water quality. Recently developed WRAP-SALT(Water Rights Analysis Package) is designed primarily for computing concentration frequency statistics and supply reliability indices at locations of interest in a river system for alternative water development and management scenarios. Though motivated primarily by natural salt pollution, WRAP-SALT water quality modeling features are applicable to essentially any conservative water quality constituent. The Brazos River studies discussed in this paper focus on total dissolved solids, though the available observed data also includes chloride and sulfate which can be modeled as individual constituents. The WRAP-SALT salinity input file contains loads or concentrations of salinity inflows during each month of the hydrologic period-of-analysis and reservoir storage at the beginning of the simulation. The WRAP-SALT model computes salt loads and concentrations for each control point of a river/reservoir system for inflows and outflows during the month and end-of-month reservoir storage for each month of the hydrologic period-of-analysis, for given loads entering the system. River reaches connect control points. The mass balance algorithms proceed from upstream to downstream, with outflow from one river reach contributing to inflow to the next downstream reach. In a given month, for each control point in sequence, the inflow loads are first computed. Loads and concentrations of outflows and reservoir storage at the control point are then determined. Complete mixing during the month is assumed at locations without reservoir storage.

  • PDF

A Study on the Use of Seasoning for NAMUL Preparation -in salt concentration-" (나물 조리시 양념사용에 관한 연구 -염분농도를 중심으로-)

  • 양경임;우경자
    • Korean journal of food and cookery science
    • /
    • v.3 no.2
    • /
    • pp.17-27
    • /
    • 1987
  • The Namul is one of the most popular and fundamental foods in the Korean meal. The taste of NAMUL depends mostly on the seasonings put on which the salt concentration is the prevailing element of them. The purpose of this study is to investigate the optimum salt concentration by sensory evaluation. The amount of each seasoning except salt was reviewed and used following many food preparation books published. Four different concentrations of salt were added to make different salt concentrations of Namuls. The results of the study are following: 1. By reviewing the related publishments, the amount of seasoning used in 300g of cooked Namul were 15.5g of welsh onion, 7.9g of garlic, 9.0g of sesame, and 11.5g of welsh onion, 7.0g of garlic, 6.0g of sesame oil, 3.3g of sesame, 13.9g of sugar, 10.6g of vinegar and 5.6g of red pepper were the main seasonings for 300g of raw Namul. 2. The optimum salt concentration of cooked Nanul was 1.412% and that of raw Namul was 1.368%. 3. The salt concentration had no effect on the texture within the salt concentrations ranges of 0.84% through 1.89% in Platycodon Namul, Radish Namul, Soybean sprouts Namul, Pumpkin Namul, Raw Radish Namlll, Raw Cucumber Namu1. 4. The more the amount of soy sauce increases, the more the palatability drops. Platycodon and Cucumber Namuls had preference of color when the amount of soy sauce added was 0.8%∼l.0% of the Namul. On the other hand, Spinach Namul had the preference up to 4.8% of the Namul. 5. The overall taste of cooked Namul was considered to be the test in the salt concentrations 1.223%∼l.513%, while that of raw Namul was considered to be best in 1.183%∼1.373% of salt concentration. 6. According to the sensory evaluation, there was a tendency that the overall taste of Namul is consistent with the preferance of saltiness in Namul.

  • PDF

Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

  • Kim, Eunae;Yeom, Min Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1501-1505
    • /
    • 2014
  • Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge.

Effect of n-Alkylamine Hydrochlorides on the Cloud Point of Nonionic Polyoxyethylated Surfactant

  • Han, Suk-Kyu;Kim, Young-Mi
    • YAKHAK HOEJI
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 1976
  • The salting in and salting out of Octoxynol, N.F., a nonionic polyoxyethylated surfactant by n-alkylamine hydrochlorides ws investigated by measuring their effect on the cloud point of the surfactant at various salt concentrations. The carbon number of the alkyl chain was varied from zero to twelve. Ammonium chloride, methylamine hydrochloride and ethylamine hydrochloride tended to salt out the surfactant, lowering its cloud point in proportion to the salt concentration. n-Ankylamine and n-butylamine hydrochlorides showed salting-out effect at low concentrations of the electrolyte, while their effects were leveled off and showed rather salting-in trend at higher concentrations of the electrolyte. These salting-in effect was ascribed to the formation of a hydrotropy of the n-alky lammonium cations with the surfactant. The higher homolog compounds of n-alkylamine hydrochlorides showed extraordinarily high salting-in effect at very low oncentrations of the electrolyte. These large salting-in effects were more drastic as the chain length was getting longer. These large increases of the cloud point of the surfactant were attributed to the formation of mixed micelles of n-alkylammonium cations with the polyoxyethylated surfactant.

  • PDF

Isolation of salt-tolerant bacteria from rhizosphere and rhizoplane of halophyte plant Suaeda japonica in Gochang·Buan tidal flat (고창·부안 갯벌에 자생하는 염생식물 칠면초 근권 및 근면으로부터 내 염성 세균 분리와 그 특성화)

  • Ki, Min-Gyu;Lee, Hyeri;Cho, Ahyeon;Unno, Tatsuya;Lee, Ji-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • Nine strains of high concentrations of salt-tolerant bacteria were isolated from the rhizosphere and rhizoplane of the halophyte plant Suaeda japonica grown in Gochang Buan tidal flat. The isolated bacteria were classified as genera Vibrio (strains JRS-1, -2, -3, -4, and -5, and JRL-1 and -4) and Bacillus (strains JRL-2 and -3) based on the 16S rRNA gene sequence similarity. The optical growth condition for salt concentration was examined on the selected, representative strains. Strain JRS-1 with the closest relative of Vibrio neocaledonicus showed the highest growth rate at the total salt concentration of 6% among the incubation conditions of 3-8% salt concentrations. Strain JRL-2 with the closest relative of Bacillus thuringiensis showed the tendency that growth rate increased with increasing salt concentrations and the maximum growth rate at 7% of the total salt concentration. The isolated bacteria showed salt-resistances to higher salt concentrations than their habitat soils with 3%. In addition, we identified evidences of potentially plant interaction-relevant enzymatic activities, from utilization of some substrates rich in plants, such as triglyceride, ${\rho}$-nitrophenyl-${\alpha}$,$\text\tiny{D}$-glucoside, and ${\rho}$-nitrophenyl-${\beta}$,$\text\tiny{D}$-glucoside.