DOI QR코드

DOI QR Code

Isolation of salt-tolerant bacteria from rhizosphere and rhizoplane of halophyte plant Suaeda japonica in Gochang·Buan tidal flat

고창·부안 갯벌에 자생하는 염생식물 칠면초 근권 및 근면으로부터 내 염성 세균 분리와 그 특성화

  • Ki, Min-Gyu (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Lee, Hyeri (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Cho, Ahyeon (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Unno, Tatsuya (Faculty of Biotechnology, Jeju National University) ;
  • Lee, Ji-Hoon (Department of Bioenvironmental Chemistry, Chonbuk National University)
  • Received : 2016.12.29
  • Accepted : 2017.04.09
  • Published : 2017.06.30

Abstract

Nine strains of high concentrations of salt-tolerant bacteria were isolated from the rhizosphere and rhizoplane of the halophyte plant Suaeda japonica grown in Gochang Buan tidal flat. The isolated bacteria were classified as genera Vibrio (strains JRS-1, -2, -3, -4, and -5, and JRL-1 and -4) and Bacillus (strains JRL-2 and -3) based on the 16S rRNA gene sequence similarity. The optical growth condition for salt concentration was examined on the selected, representative strains. Strain JRS-1 with the closest relative of Vibrio neocaledonicus showed the highest growth rate at the total salt concentration of 6% among the incubation conditions of 3-8% salt concentrations. Strain JRL-2 with the closest relative of Bacillus thuringiensis showed the tendency that growth rate increased with increasing salt concentrations and the maximum growth rate at 7% of the total salt concentration. The isolated bacteria showed salt-resistances to higher salt concentrations than their habitat soils with 3%. In addition, we identified evidences of potentially plant interaction-relevant enzymatic activities, from utilization of some substrates rich in plants, such as triglyceride, ${\rho}$-nitrophenyl-${\alpha}$,$\text\tiny{D}$-glucoside, and ${\rho}$-nitrophenyl-${\beta}$,$\text\tiny{D}$-glucoside.

고창 부안 갯벌에 자생하는 칠면초의 근권 및 근면으로부터 내염성을 지니는 9 균주를 분리하였다. 16S rRNA 유전자를 이용한 계통분석으로 분리된 균주는 Vibrio 속과 Bacillus 속으로 분류되었다. 분리된 균주 중 Vibrio와 Bacillus로 나누어 각각 대표성을 나타낼 수 있는 균주를 선택하여 염 농도에 따른 최적 생장조건을 평가한 결과, 균주 JRS-1 (Vibrio neocaledonicus)은 총 염분 4-6%에서 높은 생장률을 보였다. 균주 JRL-2(Bacillus thuringiensis)는 염분 농도 증가에 따라 생장이 증가하였으며, 7%에서 최대 생장률을 보이고 8%에서는 감소하는 경향을 보였다. 분리된 균주들은 기존에 서식하던 토양의 염 농도인 3% (w/v) 보다 더 높은 염분에도 견딜 수 있는 내염성을 보였다. 또한 분리균주에 대한 생화학적 기질 이용 형태에 분석을 통해 triglyceride, ${\rho}$-nitrophenyl-${\alpha}$,$\text\tiny{D}$-glucoside, ${\rho}$-nitrophenyl-${\beta}$, $\text\tiny{D}$-glucoside 이용 등 식물과의 특이적인 상호작용을 나타내는 것으로 간주할 수 있는 반응들을 확인하였다.

Keywords

References

  1. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76: 1145-1152 https://doi.org/10.1007/s00253-007-1077-7
  2. Glick BR (2003) Phytomediation: synergistic use of plants and bacteria to clean the environment. Biotechnol Adv 21: 383-393 https://doi.org/10.1016/S0734-9750(03)00055-7
  3. Gomes NCM, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil 232(1): 167-180 https://doi.org/10.1023/A:1010350406708
  4. Gond SK, Bergen MS, Torres MS, White JF Jr. (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172: 79-87 https://doi.org/10.1016/j.micres.2014.11.004
  5. Lee YW, Park MO, Yoon JH, Hur SB (2012) Temporal and spatial variation of microalgal biomass and community structure in seawater and surface sediment of the Gomso bay as determined by chemotaxonomic analysis. J Korean Soc Oceanogr 17(2): 87-94
  6. Lim SU, Lee TG, Sa DM (1995) Isolation and physiological characteristics of auxin-producing soil bacteria. Korean J Soil Sci Fert 28: 75-82
  7. Ludwig W, Strunk O, Westram R, Richter L, Mejer H, Yadhukymar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Gingart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nongoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4): 1363-1371 https://doi.org/10.1093/nar/gkh293
  8. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42: 565-572 https://doi.org/10.1016/j.plaphy.2004.05.009
  9. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651-681 https://doi.org/10.1146/annurev.arplant.59.032607.092911
  10. Park JM, Park JH, Kim JG, You YH (2016) Securing and analysis of fungal endophytic diversity from roots of Salicornia europaea L. J Life Sci 50(3): 89-98
  11. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: 590-596
  12. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielmans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., anitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca). Int J Syst Bacteriol 37: 43-51 https://doi.org/10.1099/00207713-37-1-43
  13. Reva ON, Dixelius C, Meijer J, Priest FG (2004) Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol Ecol 48: 249-259 https://doi.org/10.1016/j.femsec.2004.02.003
  14. Rodriguez R, Henson JJ, Van VE, Hoy M, Wright L, Beckwith F, Kim Y, Redman R S (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2: 404-416 https://doi.org/10.1038/ismej.2007.106
  15. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102: 13386-13391 https://doi.org/10.1073/pnas.0504423102
  16. Yang J, Kloepper JW, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1): 1-4 https://doi.org/10.1016/j.tplants.2008.10.004
  17. You YH, Yoon H, Seo Y, Kim M, Shin JH, Lee IJ, Choo YS, Kim JG (2012) Analysis of genomic diversity of endophytic fungal strains isolated from the roots of Suaeda japonica and S. maritima for the restoration of ecosystems in Buan salt marsh. Korean J Microbiol Biotechnol 40(4): 287-295 https://doi.org/10.4014/kjmb.1207.07025
  18. You YH, Yoon H, Woo JR, Seo Y, Shin JH, Choo YS, Lee IJ, Kim JG (2011) Plant growth promotion activity of endophytic fungi isolated from the roots of Calystegia soldanella. Korean J Microbiol Biotechnol 39(4): 324-329