• Title/Summary/Keyword: salt and pH conditions

Search Result 302, Processing Time 0.029 seconds

Osmotic Cross Second Virial Coefficient ($B_{23}$) of Unfavorable Proteins: Modified Lennard-Jones Potential

  • Choi, Sang-Ha;Bae, Young-Chan
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.763-769
    • /
    • 2009
  • A chromatographic method is used to measure interactions between dissimilar proteins in aqueous electrolyte solutions as a function of ionic strength, salt type, and pH. One protein is immobilized on the surface of the stationary phase, and the other is dissolved in electrolyte solution conditions flowing over that surface. The relative retention of proteins reflects the mean interactions between immobile and mobile proteins. The osmotic cross second virial coefficient calculated by assuming a proposed potential function shows that the interactions of unfavorable proteins depend on solution conditions, and the proposed model shows good agreement with the experimental data of the given systems.

Cultivation Characteristics and Optimal Conditions for Mycelial Growth of Volvariella bombycina (흰비단털버섯(Volvariella bombycina)의 배양적 특성 및 균사 배양 조건 설정)

  • Gyeong Jin Min;Hye Sung Park;Tai Moon Ha;Eun Ji Lee
    • Journal of Mushroom
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • Volvariella bombycinais an edible mushroom commercially cultivated in Korea and other countries. In this study, the culture characteristics and optimal growth conditions of milky mushroom strains were determined. The growth temperature and pH range of V. bombycinawas extensively investigated between 15 and 35℃ and pH 3-11. For efficient cultivation, 20 types of nutrient sources were selected, specifically, 21 carbon sources, 6 organic nitrogen sources, 7 inorganic nitrogen sources, 13 amino acids, 9 organic acids, and 13 inorganic salts. The impact of each of the selected nutrition sources and their concentration on growth was investigated. The optimum temperature and pH were determined to be 30℃ and pH 8.0, respectively. The optimum concentration of medium elements required for mycelial growth of V. bombycinawas determined to be as follows: carbon source, 0.7% Soluble starch; organic nitrogen source, 0.7% Soytone; inorganic nitrogen source, 1.0% (NH4)2C4H4O6; amino acid, 0.1% cysteine; organic acid, 0.07% lactic acid; and inorganic salt, 0.07 mM CaCl2.

Effects of Activated Carbon on Growth and Physical Responses of Indoor Plant Dracaena braunii to Alleviate Salt-induced Stress in Water Culture (수경재배 시 염소흡착을 위한 활성탄 처리가 실내식물인 개운죽(Dracaena braunii)의 생육 및 생리에 미치는 영향)

  • Ju, Jin Hee;Son, Hye Mi;Kim, Won Tae;Yoon, Yong Han
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • This study aimed to analyze the growth and physical responsees of Dracaena braunii in response salt accumulation in ornamental water culture and to examine the effect of activated carbon on this growth response. The experiment was conducted in a plant growth chamber and the indoor environmental conditions of the chamber were set at $23{\pm}1^{\circ}C$ temperature, $70{\pm}3%$ humidity, and 1,000 lux brightness. The observation of the growth response of plants in the presence of activated carbon showed that the pH with activated carbon maintained sub-acidic to neutral (6.27~7.32) conditions and showed decreased electric conductivity in the media. As the treatment with added activated carbon showed good growth and physical responses, this indicated that absorption effect of activated carbon had a positive influence on the growth of plants. However, as the absorption effect of activated carbon may decrease over time and the use of high concentrations of activated carbon might cause nutrition shortage, various concentration of activated carbon and their absorption effects need to be investigated in the future.

Preparation and Characterization of Peptizable Alumina

  • Lee, Chong-Mok;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.329-333
    • /
    • 1985
  • A procedure for the preparation of peptizable pseudoboehmite has been described in detail based upon a process of neutralization of an aqueous aluminum sulfate or chloride solution with aqueous ammonia. In order to obtain peptizable pseudoboehmite products, carefully controlled conditions were required in the whole processes of neutralization, aging, washing, and drying. The optimum conditions experimentally found are the following. The aluminum salt solution is neutralized with aqueous ammonia until the final pH of the solution reaches 10.0 to 10.8 or 9.0 to 9.3 for the sulfate of chloride, respectively. The alumina gel formed is subjected to aging at $80^{\circ}C for about 3 hours and washed with water more than 5 times to reduce the residual sulfate or chloride ion in the final products to less than 4%. The pseudoboehmite gel thus obtained should be dried oven at 80 to $100^{\circ}C for a few to several hours depending on the selected temperatures.

Removal of Aqueous Arsenic Via Adsorption onto Si Slag (규소 슬래그를 이용한 수용상 비소 흡착 제거)

  • Kim, Seong Hee;Seol, Jeong Woo;Lee, Woo Chun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.521-533
    • /
    • 2013
  • This study was initiated to evaluate the applicability of Si slag as an adsorbent via investigation of the main properties of Si slag as an adsorbent aw well as characterization of adsorption features between aqueous arsenic and Si slag. The specific surface area of Si slag was measured to be 6.71 $m^2/g$ which seems to be slightly higher than those of other slags, but relatively lower than those of iron (oxyhydr)oxides extensively used for arsenic controlling processes. The point of zero salt effect (PZSE) of Si slag determined by potentiometric titration appeared to be comparatively high (7.3), indicating the Si slag may be favorably used for adsorption of arsenic which predominantly exists as an oxy-anions. The results of adsorption isotherm indicate that regardless of arsenic species, Langmuir-type isotherm is the most suitable to simulate the adsorption of arsenic onto Si slag. With regard to pH-dependence of arsenic adsorption, the adsorption maxima of arsenite was centered at pH 7, and the adsorption was remarkably decreased in the other pH conditions. In the case of arsenate, on the other hand, the adsorption was highest at the lowest pH (4.0) and then gradually decreased with the increase of pH. Based on the results of kinetic experiments, it is likely that the adsorption of arsenite approached equilibrium within 2 hr, but it took about 8 hr for arsenate adsorption to be equilibrated. In addition, the Pseudo second order was evaluated to be most consistent with the empirical data of arsenic adsorption onto Si slag in this study. Under identical conditions, the affinity of arsenate onto Si slag was estimated to be nearly 6 times higher than that of arsenite.

Effect of Several Factors on the Characteristics of Six-Vegetable and Fruit Juice (혼합과채쥬스 특성에 미치는 여러 인자의 영향)

  • Lee, Kyu-Hee;Choi, Hee-Sook;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.439-444
    • /
    • 1995
  • Preparative conditions and characteristics of six-vegetable and fruit juice were studied for the effects of mixing ratio, heat treatment and addition of sugar, salt and organic acid. The vegetables and fruit used were carrot(Ct), cabbage(Cg), pear(Pr), cucumber(Cr), celery(Cy) and dongchimi(Di). From the sensory results of mixing ratio of three of binary mixtures of Cg-Pr(1:3):Ct-Di(1:4):Cr-Cy(3:1), two ratios of 5.0:2.5:2.5(V-6A) and 6.0:2.0:2.0(V-6B) were suggested optimal for six-vegetable and fruit juice. Addition of 2% sucrose and 0.3% NaCl improved the preference significantly. The pH 4.0 for V-6A and pH 3.5 for V-6B were more prefered when pH was adjusted by citric acid. Heating the juice at $100^{\circ}C$ for 100 minutes slightly decreased pH and increased the acidity. Total solids and viscosity were also decreased by heating. All of those changes were more significant in V-6B than V-6A, probably due to lower pH. Heating the juice resulted in a slight decrease in L value and an increase in a and b values. Heating at $100^{\circ}C$ caused an increase in moldy flavor and a decrease in fresh vegetable flavor while heating at $80^{\circ}C$ for 20 minutes changed them little.

  • PDF

Molecular and Biochemical Characterization of a Novel Xylanase from Massilia sp. RBM26 Isolated from the Feces of Rhinopithecus bieti

  • Xu, Bo;Dai, Liming;Li, Junjun;Deng, Meng;Miao, Huabiao;Zhou, Junpei;Mu, Yuelin;Wu, Qian;Tang, Xianghua;Yang, Yunjuan;Ding, Junmei;Han, Nanyu;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.9-19
    • /
    • 2016
  • Xylanases sourced from different bacteria have significantly different enzymatic properties. Therefore, studying xylanases from different bacteria is important to their applications in different fields. A potential xylanase degradation gene in Massilia was recently discovered through genomic sequencing. However, its xylanase activity remains unexplored. This paper is the first to report a xylanase (XynRBM26) belonging to the glycosyl hydrolase family (GH10) from the genus Massilia. The gene encodes a 383-residue polypeptide (XynRBM26) with the highest identity of 62% with the endoxylanase from uncultured bacterium BLR13. The XynRBM26 expressed in Escherichia coli BL21 is a monomer with a molecular mass of 45.0 kDa. According to enzymatic characteristic analysis, pH 5.5 is the most appropriate for XynRBM26, which could maintain more than 90% activity between pH 5.0 and 8.0. Moreover, XynRBM26 is stable at 37℃ and could maintain at least 96% activity after being placed at 37℃ for 1 h. This paper is the first to report that GH10 xylanase in an animal gastrointestinal tract (GIT) has salt tolerance, which could maintain 86% activity in 5 M NaCl. Under the optimum conditions, Km, Vmax, and kcat of XynRBM26 to beechwood xylan are 9.49 mg/ml, 65.79 μmol/min/mg, and 47.34 /sec, respectively. Considering that XynRBM26 comes from an animal GIT, this xylanase has potential application in feedstuff. Moreover, XynRBM26 is applicable to high-salt food and seafood processing, as well as other high-salt environmental biotechnological fields, because of its high catalytic activity in high-concentration NaCl.

Development of a Novel Yeast Strain Which Ferments Soy Sauce by Protoplast Fusion

  • Lee, Eun-Ju;Kim, Jong-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.24-30
    • /
    • 1993
  • In order to develop a novel yeast which produces the charateristic aroma of soy sauce, a protoplast fusion between Zygosaccharomyces rouxii WFS4 and Torulopsis versatilis IAM 4993 was carried out. Auxotrophic mutants as selective markers were obtained from Zygosaccharomyces rouxii and Torulopsis versatilis by treatment of N-methyl-N -nitro-N-nitrosoguanidine. The conditions of the protoplast formation and the regeneration for fusion were examined. The protoplast fusion using polyethylene glycol 4000 led to the fusion frequency of $4~5{\times}10^{-7}\;cells/ml$. Among fusants, a fusant ST723-F31 presented the best results in terms of the aromaticity of fragrance, the growth pattern, the resistance against salt and the degree of growth according to pH. It makes easy to control the production and the balance of aroma components so that it gives a good flavor, shortens the fermentation period and, simplifies the preparation process when using a bioreactor into which fusant is immobilized.

  • PDF

Determination of Non-Steroidal Anti-Inflammatory Drugs in Human Urine Sample using HPLC/UV and Three Phase Hollow Fiber-Liquid Phase Microextraction (HF-LPME)

  • Cha, Yong Byoung;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3444-3450
    • /
    • 2013
  • Three phase hollow fiber-liquid phase microextraction (HF-LPME), which is faster, simpler and uses a more environmentally friendly sample-preparation technique, was developed for the analysis of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in human urine. For the effective simultaneous extraction/concentration of NSAIDs by three phase HF-LPME, parameters (such as extraction organic solvent, pH of donor/acceptor phase, stirring speed, salting-out effect, sample temperature, and extraction time) which influence the extraction efficiency were optimized. NSAIDs were extracted and concentrated from 4 mL of aqueous solution at pH 3 (donor phase) into dihexyl ether immobilized in the wall pores of a porous hollow fiber, and then extracted into the acceptor phase at pH 13 located in the lumen of the hollow fiber. After the extraction, 5 ${\mu}L$ of the acceptor phase was directly injected into the HPLC/UV system. Simultaneous chromatographic separation of seven NSAIDs was achieved on an Eclipse XDB-C18 (4.6 mm i.d. ${\times}$ 150 mm length, 5 ${\mu}m$ particle size) column using isocratic elution with 0.1% formic acid and methanol (30:70) at a HPLC-UV/Vis system. Under optimized conditions (extraction solvent, dihexyl ether; $pH_{donor}$, 3; $pH_{acceptor}$, 13; stirring speed, 1500 rpm; NaCl salt, 10%; sample temperature, $60^{\circ}C$; and extraction time, 45 min), enrichment factors (EF) were between 59 and 260. The limit of detection (LOD) and limit of quantitation (LOQ) in the spiked urine matrix were in the concentration range of 5-15 ng/mL and 15-45 ng/mL, respectively. The relative recovery and precision obtained were between 58 and 136% and below 15.7% RSD, respectively. The calibration curve was linear within the range of 0.015-0.96 ng/mL with the square of the correlation coefficient being more than 0.997. The established method can be used to analyse of NSAIDs of low concentration (ng/mL) in urine.

Optimizing analytical method in Health Functional Food code with adjustable chromatographic parameters: A case study of vitamin C (건강기능식품공전 시험법의 크로마토그래프법 조건의 조정 및 비타민C에 대한 적용성 평가 연구)

  • Junghoon Shin;Yooseong Jeong;Yong Seok Choi;Sang Beom Han;Dong-Kyu Lee
    • Analytical Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.143-154
    • /
    • 2024
  • In this study, we improved the vitamin C test method and reviewed data on the adjustable range of chromatography conditions for quantification. First, we adjusted the mobile phase conditions such as solvent composition, salt concentration, pH and column temperature and in particular, it was confirmed through an improved test method that the peak derived from the buffer solution could be clearly separated from the target component, vitamin C by adjusting the pH. The retention time of vitamin C was partially changed by adjusting the column diameter, length and particle size but the number of theoretical plates indicated similar values and did not affect the separation and quantitative analysis of the target component. The flow rate according to the column specifications was derived from the equation proposed by the U.S. FDA (Food and Drug administration) and the Korean MFDS (Ministry of Food and Drug Safety), and evaluation of the applicability to vitamin complexes showed high selectivity for vitamin C even with altered stationary phase conditions and flow rates. In conclusion, vitamin C can be optimally separated and detected by changing the chromatographic method conditions and it was confirmed that the mobile and stationary phase conditions of liquid chromatography can be slightly adjusted in case the assay method uses an isocratic elution.