DOI QR코드

DOI QR Code

Removal of Aqueous Arsenic Via Adsorption onto Si Slag

규소 슬래그를 이용한 수용상 비소 흡착 제거

  • Kim, Seong Hee (Department of Earth and Environmental Sciences and Research Institute of Natural Science(RINS), Gyeongsang National University) ;
  • Seol, Jeong Woo (Department of Earth and Environmental Sciences and Research Institute of Natural Science(RINS), Gyeongsang National University) ;
  • Lee, Woo Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science(RINS), Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science(RINS), Gyeongsang National University)
  • 김성희 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 설정우 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 이우춘 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Received : 2013.10.27
  • Accepted : 2013.12.19
  • Published : 2013.12.28

Abstract

This study was initiated to evaluate the applicability of Si slag as an adsorbent via investigation of the main properties of Si slag as an adsorbent aw well as characterization of adsorption features between aqueous arsenic and Si slag. The specific surface area of Si slag was measured to be 6.71 $m^2/g$ which seems to be slightly higher than those of other slags, but relatively lower than those of iron (oxyhydr)oxides extensively used for arsenic controlling processes. The point of zero salt effect (PZSE) of Si slag determined by potentiometric titration appeared to be comparatively high (7.3), indicating the Si slag may be favorably used for adsorption of arsenic which predominantly exists as an oxy-anions. The results of adsorption isotherm indicate that regardless of arsenic species, Langmuir-type isotherm is the most suitable to simulate the adsorption of arsenic onto Si slag. With regard to pH-dependence of arsenic adsorption, the adsorption maxima of arsenite was centered at pH 7, and the adsorption was remarkably decreased in the other pH conditions. In the case of arsenate, on the other hand, the adsorption was highest at the lowest pH (4.0) and then gradually decreased with the increase of pH. Based on the results of kinetic experiments, it is likely that the adsorption of arsenite approached equilibrium within 2 hr, but it took about 8 hr for arsenate adsorption to be equilibrated. In addition, the Pseudo second order was evaluated to be most consistent with the empirical data of arsenic adsorption onto Si slag in this study. Under identical conditions, the affinity of arsenate onto Si slag was estimated to be nearly 6 times higher than that of arsenite.

본 연구는 규소슬래그의 흡착제로서의 주요한 특성을 분석하고 규소슬래그와 수용상 비소와의 흡착특성을 규명하여 규소슬래그의 비소 흡착제로서의 활용가능성을 평가하고자 수행되었다. 규소슬래그의 비표면적은 6.71 $m^2/g$으로 다른 슬래그들에 비해 다소 높았으나, 비소 제어에 널리 이용되고 있는 철 (산수)산화물들에 비해서는 상대적으로 낮았다. 전위차 적정법(potentiometric titration)에 의해 측정된 영전하점(point of zero salt effect, PZSE)은 7.3으로 비교적 높아 주로 음이온으로 존재하는 비소의 흡착에 유리한 특성인 것으로 조사되었다. 흡착등온식을 알아보기 위한 실험결과, 두 비소 종 모두 Langmuir 등온식이 규소슬래그와의 흡착특성을 가장 잘 모사한 것으로 평가되었다. pH에 따른 흡착특성은 3가 비소는 pH 7에서 최대 흡착량을 보였고, 그 외 pH 조건에서는 흡착량이 현저하게 감소하였다. 5가 비소의 최대 흡착량은 가장 낮은 pH 조건(pH 4)에서 나타났으며, pH가 증가함에 따라 흡착량이 지속적으로 감소하는 것으로 조사되었다. 흡착반응속도를 알아보기 위한 실험결과, 3가 비소의 흡착은 2시간 이내에 평형에 도달하였으며, 5가 비소의 경우에는 8시간 이내에 평형에 도달하였다. 그리고 비소의 화학종과 관계없이 규소슬래그와의 흡착반응속도는 유사이차 반응속도모델이 가장 적합한 것으로 나타났다. 동일한 실험 조건에서 5가 비소가 3가 비소 보다 약 6배가량 큰 규소슬래그와의 친화력을 나타났다.

Keywords

References

  1. Bai, B., Hankins, N.P., Hey, M.J. and Kingman, S.W. (2004) In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Ind. Eng. Chem. Res., v.43, p.5326-5338. https://doi.org/10.1021/ie034307t
  2. Bothe, J.V. and Brown, P.W. (1999) Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol., v.33, p.3806-3811. https://doi.org/10.1021/es980998m
  3. Carrasco, N., Kretzchmar, R., Pesch, M.-L. and Kraemer, S.M. (2007) Low concentration of surfactants enhance siderophore-promoted dissolution of goethite. Environ. Sci. Technol., v.37, p.3633-3638.
  4. Choi, S.-W., Kim V., Chang W.-S. and Kim, E.-Y. (2007) The present situation of production and utilization of steel slag in korea and other countries. J. Korean Con. Ins., v.19, p.28-33.
  5. Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. In Schindler, P. W.(ed.) Reviews in mineralogy and geochemistry, v.23, p.170-260.
  6. David, S., David, B. Carol, P. and Jeff, B. (2004) Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater. Waste Geotechnical News, p.39-44.
  7. Du, Q., Sun, Z., Forsling, W. and Tang, H. (1997) Acidbase properties of aqueous illite surfaces. J. Colloid Interf. Sci., v.187, p.221-231. https://doi.org/10.1006/jcis.1996.4631
  8. Harris, M.A. and Ragusa, S. (2001) Bioremediation of acid mine drainage using decomposable plant material in a constant flow bioreactor. J. Environ. Geol., v.40, p.1192-1204. https://doi.org/10.1007/s002540100298
  9. He, Y.T. and Traina, S.J. (2005) Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation. Environ. Sci. Technol., v.39, p.4499-4504. https://doi.org/10.1021/es0483692
  10. Hwang, E.-H. and Kim, J.-M. (2008) Characteristics of EVA-polymer modified mortars recycling rapidchilled steel slag fine aggregate. J. Korean Ind. Eng. Chem., v.19, p.652-660.
  11. Inskeep, W.P., McDermott, T.R. and Fendorf, S. (2002) Arsenic (V)/(III) cycling in soils and natural water: chemical and microbiological processes. In Frankenberger, W.T., Jr.(ed), Environmental chemistry of arsenic, Marcel Dekker, New York, p.183-215.
  12. Jain, A., Raven, K.P. and Loeppert, R.H. (1999) Arsenite and arsenate adsorption on ferrihydrite : Surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol., v.33, p.1179-1184. https://doi.org/10.1021/es980722e
  13. Jeong, H.S., Lee, W.C., Cho, H.G. and Kim S.-O. (2008) Study on adsorption characteristics of arsenic on magnetite. J. Korean Miner. Soc., v.21, p.227-237.
  14. Jonsson, C.M., Persson, P., Sjoberg, S. and loring, J.S. (2008) Adsorption of glyphosate on goethite($\alpha$-FeOOH): Surface complexation modeling combining spectroscopic and adsorption data. Environ. Sci. Technol., v.42, p.2464-2469. https://doi.org/10.1021/es070966b
  15. Jung, M.C. (2005) Remediation of acid mine drainage from an abandoned coal mine using steel mill slag, cow manure and limestone. J. Korean Soc. Soil Groundwater Environ., v.10, p.16-23.
  16. Jung, Y.I., Lee, W.C., Cho, H.G., Yun, S.T. and Kim, S.-O. (2008) Adsorption of arsenic onto two-line ferrihydrite. J. Korean Miner. Soc., v.21, p.227-237.
  17. Keiko, S., Shunsuke, N., Wahyu, W. and Tsuyoshi, H. (2008) Removal of arsenate in acid mine drainage by a permeable reactive barrier bearing Granulated Blast Furnace Slag: Column study. Materials Trans., v.49, p.835-844. https://doi.org/10.2320/matertrans.M-MRA2008801
  18. Kim, E.-H., Rhee, S.-S., Lee, G.-H., Kim, Y.-W., Park, H.-B. and Oh, M.-H. (2011) Assessment of the sorption characteristics of cadmium onto steel-making slag in simulated sea water using batch experiment. Jour. Korean Geotec. Soc., v.27, p.43-50. https://doi.org/10.7843/kgs.2011.27.4.043
  19. Kim, S.H., Lee, W.C., Cho, H.G. and Kim, S.-O. (2012) Characterization of arsenic adsorption onto hematite. J. Korean Miner. Soc., v.25, p.197-210. https://doi.org/10.9727/jmsk.2012.25.4.197
  20. Kim, S.-O., Lee, W.C., Jeong, H.S. and Cho, H.G. (2009) Adsorption of arsenic on goethite. J. Korean Miner. Soc., v.22, p.177-189.
  21. Kraepiel, A.M.L., Keller, K. and Morel, F.M.M. (1998) on the acid-base chemistry of permanently charged minerals. Environ. Sci. Technol., v.32, p.2829-2838. https://doi.org/10.1021/es9802899
  22. Kwon, S.-D. and Kim, S.-J. (1999) A study on the treatment of the acid mine drainage using the steel mill slag. J. Korean Soc. Groundwater Environ., v.6, p.206-212.
  23. La force, M.J., Hansel, C.M. and Fendorf, S. (2000) Arsenic speciation, seansonal transformations, and co-distribution with iron in a mine waste-influenced Palustrine Emegent Wetland. Environ. Sci. Technol., v.34, p.3937-3943. https://doi.org/10.1021/es0010150
  24. Lee, G.-H., Kim, E.-H., Park, J.-B. and Oh, M.-H. (2008) Estimation of the removal capacity for cadmium and calculation of minimum reaction time of BOF slag. J. Korean Geotec. Soc., v.27, p.5-12. https://doi.org/10.7843/kgs.2011.27.10.005
  25. Lee, M.H. and Jeon, J.H. (2010) Study for the stabilization of arsenic in the farmland soil by using steel making slag and limestone. J. Korean Econ. Environ. Geol., v.43, p305-314.
  26. Lee, S.E., Neue, H.U., Park, J.K. and Lim, S.H. (1993) Comparison of the ion adsorption method, potentiometric titration, and backtitration technique for surface charge measurement in Ultisol, Alfiso, and Inceptisol. J. Korean Soil Sci. Fert., v.26, p.160-171.
  27. Lee, W.C., Choi, S.H., Cho H.G. and Kim, S.-O. (2011) Xray absorption spectroscopy study on surface interaction of arsenite onto two-line ferrihydrite at pHs 4 and 10. J. Korean Miner. Soc., v.24, p.73-82. https://doi.org/10.9727/jmsk.2011.24.2.073
  28. Lee, W.C., Jeong H.S., Kim, J.Y. and Kim, S.-O. (2009) Study on adsorption features of arsenic onto lepidocrocite. J. Korean Econ. Environ. Geol., v.42, p.95-105.
  29. Lowry, G.V. and Johnson, K.M. (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution, Environ. Sci. Technol., v.38, p.5208-5216. https://doi.org/10.1021/es049835q
  30. Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Romeo, M. (2009) Arsenic adsorption onto hematite and goethite. Chimie, v.12, p.876-881. https://doi.org/10.1016/j.crci.2008.10.012
  31. Marek, K. (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. Colloid Interf. Sci., v.337, p.439-448. https://doi.org/10.1016/j.jcis.2009.04.072
  32. Marshall, L. (1999) Management of Sulfidic Mine Wastes and Acid Drainage. Australian Centre for Mining Environmental Research, 18p.
  33. Michelle, L.C. and Robert, S. (2004) Association of cadmium with MnO2 particles generated during permanganate oxidation. Water Res. v.38, p.887-894. https://doi.org/10.1016/j.watres.2003.09.029
  34. Nielsen, U.G., Paik, Y., Julmis, K., Schoonen, M.A.A., Reeder, R.J. and Grey, C.P. (2005) Investigating sorpton on iron-oxyhydroxide soil minerals by solid-statd NMR spectroscopy: A 6Li MAS NMR study of adsorption and adsorption on goethite. J. Phy. Chem. B., v.109, p.18310-18315. https://doi.org/10.1021/jp051433x
  35. Nowack, B., Lutzenkirchen, J., Behra, P. and Sigg, L. (1996) Modeling the adsorption of metal-EDTA complexes onto oxides. Environ. Sci. Technol., v.30, p.2397-2405. https://doi.org/10.1021/es9508939
  36. Oh, C.-T., Rhee, S.-S., Toshifumi, I., Kon, H.-J., Lee, W.-T. and Park, J.-B. (2010) Sorption characteristics of arsenic on furnace slag by adsorption isotherm and kinetic sorption experiments. J. Korean Geotec. Soc., v.26, p.37-45.
  37. Palfy, P., Vircikova, E. and Molnar, L. (1999) Processing of arsenic waste by precipitation and solidification. Waste Management, v.19, p.55-59. https://doi.org/10.1016/S0956-053X(99)00014-8
  38. Park, K.-S., Kim. H.-S. and Chun, H.D. (2006) Application of steel-making(BOF) slag for in-situ remediation of subaqueous contaminated sediments. Korean National Com. Irrig. Drai., v.13, p.310-322.
  39. Phillip, E., Santo, R. and David, C. (1998) Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. J. Wat. Res., v.32, p.3724-3730. https://doi.org/10.1016/S0043-1354(98)00144-4
  40. Ponder, S.M., Darab, J.G., and Mallouk, T.E. (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol., v.34, p.2564-2569. https://doi.org/10.1021/es9911420
  41. Raven, K.P., Jain, A. and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrigydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., v.32, p.344-349. https://doi.org/10.1021/es970421p
  42. Rietra, R.P.J.J., Hiemstra, T. and van Riemsdijk, W.H. (2001) Interaction between calcium and phosphate adsorption on goethite. Environ. Sci. Technol., v.35, p.3369-3374. https://doi.org/10.1021/es000210b
  43. Roman-Ross, G., Cuello, G.J., Turrilas, X., Fernandez-Martinez, A. and Charlet, L. (2006) Arsenite sorption and co-precipitation with calcite. Chemical Geology, v.233, p.328-336. https://doi.org/10.1016/j.chemgeo.2006.04.007
  44. Schwertmann U. and Cornell R.M. (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York, U.S.A. 188p.
  45. Shin, D.H., Lee, S.E., Cho, S.H., Kim, H.C. and Ha, D.Y. (2003) Treatment of acid mine drainage(AMD) by limestone marine shells, slag. J. Environ. Eng., v.5.1-3 p.423-430.
  46. Singh, T.S. and Pant, K.K. (2006) Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater., v.131, p.29-36. https://doi.org/10.1016/j.jhazmat.2005.06.046
  47. Singh, U. and Uehara, G. (1998) Electrochemistry of the double layer: Principles and applications to soils. In Sparks, D.L. (ed.), Soil physical chemistry, CRC Press, Boca Raton, Florida, U.S.A, 1-56p.
  48. Son, J.H., Roh, H., Lee, S.Y., Kim, G.H., Park, J.K., Yang, J.K. and Chang, Y.Y. (2009) Stabilization of heavy metal contaminated paddy soils near abandoned mine with steel slag and CaO. J. Korean Soil Groundwater Environ., v.14, p.78-86.
  49. Sparks, D.L. (1999) Kinetics and mechanisms of chemical reactions at the soil/mineral water interface. In Sparks, D.L.(ed.) Soil physical chemistry. 2nd(ed.), CRC press, Boca Raton, Fl, p.135-191.
  50. Sparks, D.L. (2003) Environmental Soil Chemistry, p.207-244, Academic Press, San Diega, C.A.
  51. Stumm, W. (1992) Chemistry of the Solid-water interface. John Wiley & Sons, New York, U.S.A.
  52. Waybrant, K.R., Ptacek, C.J. and Blowes, D.W. (2002) Treatment of mine drainage using permeable reactive barriers: Column experiments. Environ. Sci. Technol., v.36, p.1349-1356. https://doi.org/10.1021/es010751g
  53. Williams, J.W. and Silver, S. (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Micro. Tech., v.6, p.530-537. https://doi.org/10.1016/0141-0229(84)90081-4
  54. Yang, J.E., Park, D.S. and Han, D.S. (1995) Comparative assessment of the half-lives of benfuresate and oxolinic acid estimated from kinetic models under field soil condition. J. Korean Environ. Agri., v.14, p.302-311.

Cited by

  1. Characteristics of Phosphate Adsorption using Prepared Magnetic Iron Oxide (MIO) by Co-precipitation Method in Water vol.29, pp.6, 2015, https://doi.org/10.11001/jksww.2015.29.6.609