Osmotic Cross Second Virial Coefficient ($B_{23}$) of Unfavorable Proteins: Modified Lennard-Jones Potential

  • Choi, Sang-Ha (Division of Chemical Engineering and Molecular Thermodynamics Lab., Hanyang University) ;
  • Bae, Young-Chan (Division of Chemical Engineering and Molecular Thermodynamics Lab., Hanyang University)
  • Published : 2009.10.25

Abstract

A chromatographic method is used to measure interactions between dissimilar proteins in aqueous electrolyte solutions as a function of ionic strength, salt type, and pH. One protein is immobilized on the surface of the stationary phase, and the other is dissolved in electrolyte solution conditions flowing over that surface. The relative retention of proteins reflects the mean interactions between immobile and mobile proteins. The osmotic cross second virial coefficient calculated by assuming a proposed potential function shows that the interactions of unfavorable proteins depend on solution conditions, and the proposed model shows good agreement with the experimental data of the given systems.

Keywords

References

  1. Y. U. Moon, C. O. Anderson, H. W. Blanch, and J. M. Prausnitz, Fluid Phase Equilib., 168, 229 (2000) https://doi.org/10.1016/S0378-3812(99)00337-4
  2. W. G. McMillan and J. E. Mayer, J. Chem. Phys., 13, 276 (1945) https://doi.org/10.1063/1.1724036
  3. E. J W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948
  4. C. A. Haynes, K. Tamura, H. R. Körfer, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem., 96, 905 (1992) https://doi.org/10.1021/j100181a069
  5. V. L. Vilker, C. K. Colton, and K. A. Smith, J. Colloid Interface Sci., 79, 548 (1981) https://doi.org/10.1016/0021-9797(81)90106-5
  6. G. D. Phillies, J. Chem. Phys., 60, 2721 (1974) https://doi.org/10.1063/1.1681434
  7. R. A. Curtis, J. M. Prausnitz, and H. W. Blanch, Biotechnol. Bioeng., 57, 11 (1998) https://doi.org/10.1002/(SICI)1097-0290(19980105)57:1<11::AID-BIT2>3.0.CO;2-Y
  8. P. M. Tessier, A. M. Lenhoff, and S. I. Sandler, Biophis. J., 82, 1620 (2002) https://doi.org/10.1016/S0006-3495(02)75513-6
  9. S.Y. Patro and T. M. Przybycien, Biotechnol. Bioeng., 52, 193 (1996) https://doi.org/10.1002/(SICI)1097-0290(19961020)52:2<193::AID-BIT2>3.0.CO;2-L
  10. P. M. Tessier, A. M. Lenhoff, and S. I. Sandler, Biophys. J., 82, 1620 (2002) https://doi.org/10.1016/S0006-3495(02)75513-6
  11. P. M. Tessier, S. D. Vandrey, B. W. Berger, R. Pazhianur, S. I. Sandler, and A. M. Lenhoff, Acta Crystallogr. Sect. D: Biol. Crystallogr., 58, 1531 (2002) https://doi.org/10.1107/S0907444902012775
  12. P. M. Tessier, H. R. Johnson, R. Pazhianur, B. W. Berger, J. L. Prentice, B. J. Bahnson, S. I. Sandler, and A. M. Lenhoff Proteins: Struct., Funct; Genet., 50, 303 (2003) https://doi.org/10.1002/prot.10249
  13. J. A. Barker and D. Henderson, J. Chem. Phys., 47, 4714 (1967) https://doi.org/10.1063/1.1701689
  14. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 54, 5237 (1971) https://doi.org/10.1063/1.1674820
  15. J. Chang and S. I. Sandler, Mol. Phys., 81, 745 (1994) https://doi.org/10.1080/00268979400100501
  16. C. A. Teske, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem. B, 108, 7437 (2004) https://doi.org/10.1021/jp0361576
  17. P. L. Domen, J. R. Nevens, A. K. Mallia, G. T. Hermanson, and D. C. Klenk, J. Chromatogr., 510, 293 (1990) https://doi.org/10.1016/S0021-9673(01)93763-X
  18. S. M. Walas, Phase Equilibria in Chemical Engineering, Butterworths, Boston, MA, 1985
  19. S. Shen and B. C.-Y. Lu, Fluid Phase Equilib., 84, 9 (1993) https://doi.org/10.1016/0378-3812(93)85115-3
  20. J. Largo and J. R. Solana, Phys. A, 284, 68 (2000) https://doi.org/10.1016/S0378-4371(00)00232-6
  21. J. J. Nicolas, K. E. Gubbins, W. B. Streett, and D. J. Tidesley, Mol. Phys., 37, 1429 (1979) https://doi.org/10.1080/00268977900101051
  22. D. E. Kuehner, J. M. Prausnitz, F. Fergg, M. Wernick, H. W. Blanch, and J. Engmann, J. Phys. Chem. B, 103, 1368 (1999) https://doi.org/10.1021/jp983852i
  23. S. G. Kim and Y. C. Bae, Macromol. Res., 10, 67 (2003)
  24. N.Y. Jee and J. J. Kim, Macromol. Res., 14, 654 (2006) https://doi.org/10.1007/BF03218739