• Title/Summary/Keyword: saline environment

Search Result 174, Processing Time 0.02 seconds

Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

  • Xu, Chunlan;Sun, Rui;Qiao, Xiangjin;Xu, Cuicui;Shang, Xiaoya;Niu, Weining;Chao, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.313-320
    • /
    • 2014
  • The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia + vitamin E (250 mg/kg $BW^*d$) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma ($IFN-{\gamma}$) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and $I{\kappa}B{\alpha}$, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha ($HIF-1{\alpha}$ and $HIF-2{\alpha}$), Toll-like receptors (TLR4), P-$I{\kappa}B{\alpha}$ and nuclear factor-${\kappa}B$ p65(NF-${\kappa}B$ P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-${\kappa}B$ signaling pathway.

Changes in sedimentary structure and elemental composition in the Nakdong Estuary, Korea (낙동강 하구역 퇴적구조 및 원소조성 변화에 관한 연구)

  • Kim, Yunji;Kang, Jeongwon;Park, Seonyoung
    • Journal of Wetlands Research
    • /
    • v.23 no.3
    • /
    • pp.213-223
    • /
    • 2021
  • To understand the sedimentary environment of Scirpus planiculmis habitat (Myeongji and Eulsuk tidal flats) in the Nakdong Estuary, this study analyzed the statistical parameters (sorting, skewness, and kurtosis) of grain size data and the major (Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P), minor (Li, Sc, V, Cr, Co, Ni, Cu, Zn, Sr, Zr, Cs, Pb, Th, and U), and rare earth elements (REEs) in sediment cores. For Myeongji, the sediment structure of the upper part of the cores was poorly sorted, more finely skewed, and more leptokurtic due to construction of the West gate. By contrast, the Eulsuk cores all differed due to the contrasting floodgate operation patterns of the West and East gates. The linear discriminate function (LDF) results corresponded to the statistical parameters for grain size. At the Eulsuk tidal flat (sites ES05 and ES11), elemental distributions were representative of Al-, Fe- and Ca-associated profiles, in which the elements are largely controlled by the accumulation of their host minerals (such as Na- and K-aluminosilicate and ferromagnesium silicate) and heavy detrital minerals at the sites. Detrital minerals including the aluminosilicates are major factors in the elemental compositions at ES05, diluting the REE contents. However, clay minerals and Fe-oxyhydroxides, as well as REE-enriched heavy minerals, appeared to be controlling factors of the elemental composition at ES11. Therefore, the mineral fractionation process is important in determining the elemental composition during sedimentation, which reflects the depositional condition of riverine-saline water mixing at both sites.

Biogeochemical Study of Dissolved Organic and Inorganic Compounds under Oxic/Anoxic Environment in Lake Shihwa (시화호 산화-환원 환경하의 용존 유, 무기 화합물의 생지화학적 연구)

  • Park, Yong-Chul;Park, Jun-Kun;Han, Myong-Woo;Son, Seung-Kyu;Kim, Moon-Koo;Huh, Seong-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.53-68
    • /
    • 1997
  • Lake Shihwa, artificially constructed since 1988, shows a typical two-layered system depending on strong haline density stratification. Sill of the water gate at 6 m depth greatly restricts physical mixing with outer seawater and circulation in the lake, and contributes to the enhancement of anoxic environment in the deeper layer. With this enclosed physical environment, Lake Shihwa receives enormous amounts of organics, ammonia, and other pollutants from the neighboring municipal and industrial complexes through six major streams, thus developing biogeochemical differentiation of anoxic to suboxic environment in the high saline bottom water and highly eutrophicated brackish surface water. This study investigated vertical structures, biogeochemical behaviors and processes of various organic and inorganic compounds around oxic-anoxic interface. Nitrite and nitrate rapidly decreased below the pycnocline where about $1{\times}10^8$ tons of hypoxic bottom water exist. In this bottom layer, ammonium ranged from 75 to 360 ${\mu}M$ mainly resulting from deamination of dissolved organic nitrogen and ammonification of precipitated organic particles. Despite large amounts of surface water discharge and dilution by outer seawater inflow about $3{\times}10^8$ tons from April to August, 1996, bottom layer did not show any improvement of water quality and maintained highly reduced environment. The main reason seems to be imbalance between ineffectiveness of dilution due to shallow depth and large surface area, overloaded POC influx from the eutrophicated surface biological activity, and poor replenishment of oxygen in this artificial lake system. Therefore, as long as current salinity dependent two-layered system maintains with its physical limitations, any improvement of water quality cannot be foreseen in Lake Shihwa.

  • PDF

Studies About the Effect of Excitatory Amino Acid Receptor Antagonist on Traumatic Spinal Cord Injury (척수신경손상에 대한 흥분성 아미노산 수용체 길항제의 효과에 대한연구)

  • Kim Jong-Keun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.1-9
    • /
    • 1995
  • The slow development of histopathological changes and long period required for stabilization of lesions have suggested that secondary injury processes exacerbate the effect of initial mechanical insult after traumatic spinal cord injury (SCI). The importance of glutamate receptors in the normal functions of spinal cord, in concert with the large body of evidence that points to their involvement in neurotoxicity due to both ischemic and traumatic insults to the CNS, suggested a probable role of glutamate receptors in secondary injury process after traumatic SCI. In order to investigate the involvement of excitatory amino acid in the secondary injury process after SCI, this study examined the effect of dextrorphan, a noncompetitive NMDA receptor antagonist, on the recovery of hindlimb function and the residual tissue at injury site following SCI. Locomotor function was assessed using open field test (21 point scale). At 8 weeks spinal cord tissue was examined using quantitative histopathologic technique. Prior to surgery female Long-Evans rats were adapted to the test environment. Rats received laminectomies (T9/T10), and spinal cord contusions (NYU impactor) were produced by a 10 gm weight dropped 25 mm. DXT (15 or 30 mg/kg, i.p.) or saline was injected 15 min before contusion. Behavioral testing resumed 2 days post-injury and continued twice a week for 8 weeks. No differences between DXT and saline groups were found for hindlimb function and sparing tissue at the lesion site. These results suggest that NMDA receptor might not be involved in secondary injury processes after traumatic SCI.

  • PDF

Lithologic and Structural Controls and Geochemistry of Uranium Deposition in the Ogcheon Black-Slate Formation (옥천대(沃川帶) 우라늄광층(鑛層)의 구조규제(構造規制) 및 지구화학적(地球化學的) 특성연구(特性硏究))

  • Lee, Dai Sung;Yun, Suckew;Lee, Jong Hyeog;Kim, Jeong Taeg
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.19-41
    • /
    • 1986
  • Structural, radioactive, petrological, petrochemical, mineralogical and stable isotopic study as well as the review of previous studies of the uranium-bearing slates in the Ogcheon sequence were carried out to examine the lithological and structural controls, and geochemical environment in the uranium deposition in the sequence. And the study was extended to the coal-bearing formation (Jangseong Series-Permian) to compare the geochemical and sedimentologic aspects of uranium chemistry between Ogcheon and Hambaegsan areas. The results obtained are as follows: 1. The uranium mineralization occurs in the carbonaceous black slates of the middle to lower Guryongsan formation and its equivalents in the Ogcheon sequence. In general, two or three uranium-bearing carbonaceous beds are found with about 1 to 1.5km stratigraphic interval and they extend from Chungju to Jinsan for 90km in distance, with intermittent igneous intrusions and structural Jisturbances. Average thickness of the beds ranges from 20 to 1,500m. 2. These carbonaceous slate beds were folded by a strong $F_1$-fold and were refolded by subsequent $F_1$-fold, nearly co-axial with the $F_1$, resulting in a repeated occurrence of similar slate. The carbonaceous beds were swelled in hing zones and were shrinked or thined out in limb by the these foldings. Minor faulting and brecciation of the carbonaceous beds were followed causing metamorphism of these beds and secondary migration and alteration of uranium minerals and their close associations. 3. Uranium-rich zones with high radioactive anomalies are found in Chungju, Deogpyong-Yongyuri, MiwonBoun, Daejeon-Geumsan areas in the range of 500~3,700 cps (corresponds to 0.017~0.087%U). These zones continue along strike of the beds for several tens to a few hundred meters but also discontinue with swelling and pinches at places that should be analogously developed toward underground in their vertical extentions. The drilling surveyings in those area, more than 120 holes, indicate that the depth-frequency to uranium rich bed ranging 40~160 meter is greater. 4. The features that higher radioactive anomalies occur particularly from the carbonaceous beds among the argillaceous lithologic units, are well demonstrated on the cross sections of the lithology and radioactive values of the major uranium deposits in the Ogcheon zone. However, one anomalous radioactive zone is found in a l:ornfels bed in Samgoe, near Daejeon city. This is interpreted as a thermal metamorphic effect by which original uranium contents in the underlying black slate were migrated into the hornfels bed. 5. Principal minerals of the uranium-bearing black slates are quartz, sericite, biotite and chlorite, and as to chemical composition of the black slates, $Al_2O_3$ contents appear to be much lower than the average values by its clarke suggesting that the Changri basin has rather proximal to its source area. 6. The uranium-bearing carbonaceous beds contain minor amounts of phosphorite minerals, pyrite, pyrrhotite and other sulfides but not contain iron oxides. Vanadium. Molybdenum, Barium, Nickel, Zirconium, Lead, Cromium and fixed Carbon, and some other heavy metals appear to be positive by correlative with uranium in their concentrations, suggesting a possibility of their genetic relationships. The estimated pH and Eh of the slate suggests an euxenic marine to organic-rich saline water environment during uranium was deposited in the middle part of Ogcheon zone. 7. The Carboniferous shale of Jangseong Series(Sadong Series) of Permian in Hambaegsan area having low radioactivity and in fluvial to beach deposits is entirely different in geochemical property and depositional environment from the middle part of Ogcheon zone, so-called "Pibanryong-Type Ogcheon Zone". 8. Synthesizing various data obtained by several aspects of research on uranium mineralization in the studied sequence, it is concluded that the processes of uranium deposition were incorporated with rich organic precipitation by which soluble uranyl ions, $U{_2}^{+{+}}$ were organochemically complexed and carried down to the pre-Ogcheon sea bottoms formed in transitional environment, from Red Sea type basin to Black Sea type basin. Decomposition of the organic matter under reducing conditions to hydrogen sulfide, which reduced the $UO{_2}^{+2}$ ions to the insoluble uranium dioxide($UO_2$), on the other side the heavy metals are precipitated as sulfides. 9. The EPMA study on the identification of uraninite and others and the genetic interpretation of uranium bearing slates by isotopic values of this work are given separately by Yun, S. in 1984.

  • PDF

Incorporation Effect of Green Manure Crops on Improvement of Soil Environment on Saemangeum Reclaimed Land during Sorghum×Sudangrass Hybrid Cultivation (수수×수단그라스 재배시 녹비작물 혼입에 따른 새만금간척지 토양환경 개선 효과)

  • Yang, Chang-Hyu;Lee, Jang-Hee;Baek, Nan-Hyun;Jeong, Jae-Hyeok;Cho, Kwang-Min;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.744-748
    • /
    • 2012
  • This study was carried out to investigate the incorporation effect of green manure crops (GMC) such as the hairy vetch on improvement of soil environment in reclaimed land during sorghum${\times}$sudangrass hybrid (SSH) cultivation over the past three years from 2009 to 2011. Plots consisted of conventional fertilization (CF) and incorporation of GMC were divided by rates of additional nitrogen fertilizer ($100kg\;ha^{-1}$) and decreased percentage of 30 50 70 100 fertilization in addition to non nitrogen fertilization (NNF). Soil physico-chemical properties, growth and yield potential were examined. The results were as follows. The testing soil was showed strong alkaline saline soil with low organic matter contents and less available phosphate while exchangeable sodium and magnesium were higher. Soil salinity was increased during cultivation of summer crop. However, SSH was not affected by salt content. The fresh weight of GMC at incorporation time was $18,345kg\;ha^{-1}$. Content of total nitrogen at incorporation time was 3.09% and the C/N ratio was 12.8. Fresh and dry matter yield of SSH were higher in the order of 30%, CF, N50%, N70%d, N100%, and NNF. Fresh and dry matter yield of SSH increased in the order of CF ($55,050kg\;ha^{-1}$, $16,250kg\;ha^{-1}$), N contents from 30% to 9%. Soil physical properties, such as bulk density were decrease with incoporation of GMC, while porosity was increased. Soil chemical properties, such as pH was decreased while content of exchangeable calcium, available phosphate, and organic matter were increased. Also contents of exchangeable sodium and potassium were decreased with incorporation of GMC than those before experiment. Thus, we assumed that incorporation of hairy vetch was more effective that can lead to reduce chemical nitrogen fertilizer and to improve soil environment in cultivating SSH on Saemangeum reclaimed land.

Determination of Exchangeable Cations in Soils Affected by Different Types of Salt Accumulation (염류집적 유형이 다른 토양의 교환성 양이온 측정)

  • Lee, Ye-Jin;Yun, Hong-Bae;Kim, Rog-Young;Lee, Jong-Sik;Song, Yo-Sung;Sung, Jwa-Kyung;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.135-142
    • /
    • 2012
  • Exchangeable cations are often overestimated especially in salt-affected soils due to the presence of high levels of soluble ions in soil solution. Thus, quantitative analysis of the soil exchangeable cation based on ammonium acetate extraction method {(Exch. Cation)$_{total}$} requires additional process to remove the free ions (pre-washing) in soil with distilled water or alcohol {(Exch. Cation)$_{pw}$} or subtraction of the soluble ion contents from the total exchangeable cations {(Exch. Cation)$_{ref}$}. In this research, we compared the three different methods for the determination of exchangeable cations in soils affected by different types of salt accumulation such as the soils from upland, plastic film house, and reclaimed tidal land. In upland soils, non-saline and non-sodic soils, the regular ammonium acetate extraction method did not have any problem to determine the content of exchangeable cations without any additional process such as the pre-washing method or the subtraction method. However, the contents of exchangeable cations in the salt-affected soils might be determined better with the pre-washing method for the plastic film house soils and with the subtraction method for the reclaimed tidal land soils containing high Na.

Understanding to Enhance Efficiency of Nitrogen Uses in a Reclaimed Tidal Soil

  • Lee, Sang-Eun;Kim, Hye-Jin;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.955-960
    • /
    • 2012
  • In most agricultural soils, ammonium ($NH_4{^+}$) from fertilizer is quickly converted to nitrate ($NO_3{^-}$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. The salinity significantly affects efficiency of N fertilizer in reclaimed tidal soil, and the soil pH may influence the conversion rate of ammonium to nitrate and ultimately affect nitrogen losses from the soil profile. Several results suggest that pH has important effects on recovery of fall-applied N in the spring if field conditions are favorable for leaching and denitrification except that effects of soil pH are not serious under unfavorable conditions for N loss by these mechanisms. Soil pH, therefore, deserves attention as an important factor in the newly reclaimed tidal soils with applying N. However, fate of N studies in a newly reclaimed tidal soils have been rarely studied, especially under the conditions of saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea treated into the reclaimed tidal soil is important for nutrient management and environmental quality. In this article, we reviewed yields of rice and fate of nitrogen with respect to the properties of reclaimed tidal soils.

Self-Assembled Nanoparticles of Bile Acid-Modified Glycol Chitosans and Their Applications for Cancer Therapy

  • Kim Kwangmeyung;Kim Jong-Ho;Kim Sungwon;Chung Hesson;Choi Kuiwon;Kwon Ick Chan;Park Jae Hyung;Kim Yoo-Shin;Park Rang-Won;Kim In-San;Jeong Seo Young
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.167-175
    • /
    • 2005
  • This review explores recent works involving the use of the self-assembled nanoparticles of bile acid-modified glycol chitosans (BGCs) as a new drug carrier for cancer therapy. BGC nanoparticles were produced by chemically grafting different bile acids through the use of l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). The precise control of the size, structure, and hydrophobicity of the various BGC nanoparticles could be achieved by grafting different amounts of bile acids. The BGC nanoparticles so produced formed nanoparticles ranging in size from 210 to 850 nm in phosphate-buffered saline (PBS, pH=7.4), which exhibited substantially lower critical aggregation concentrations (0.038-0.260 mg/mL) than those of other low-molecular-weight surfactants, indicating that they possess high thermodynamic stability. The SOC nanoparticles could encapsulate small molecular peptides and hydrophobic anticancer drugs with a high loading efficiency and release them in a sustained manner. This review also highlights the biodistribution of the BGC nanoparticles, in order to demonstrate their accumulation in the tumor tissue, by utilizing the enhanced permeability and retention (EPR) effect. The different approaches used to optimize the delivery of drugs to treat cancer are also described in the last section.

Geochemical Characteristics of Devonian Cairn Formation in Alberta, Canada (캐나다 알버타 지역의 데본기 Cairn층의 지화학적 특성 연구)

  • Park, Myong-Ho;Kim, Ji-Hoon;Lee, Sung-Dong;Choi, Ji-Young;Kil, Yong-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.85-100
    • /
    • 2010
  • Devonian Cairn Formation is one of the important hydrocarbon reservoirs in Alberta, Canada. However, the Cairn Formation, outcropped in the study area, is not prospective reservoir with poor porosity and permeability by some late diagenetic processes. In this study, geochemical characteristics of the Cairn Formation were studied to use these preliminary results for advanced geological and geophysical petroleum explorations in the near future. Rock-Eval pyrolysis showed that total organic carbon content is less than 0.3 wt.%, indicating a minor amount of bitumen and/or other hydrocarbons. The carbonates in the Cairn Formation are mainly composed of subhedral and anhedral dolomites. Pore sizes in the carbonate are various, ranging from nanometer to micrometer. Clastic sediments increase in the upper and lower parts of the Cairn Formation, probably due to changing its depositional conditions. The Cairn Formation can also be divided into several intervals based on Ca/Mg ratio in dolomite and degree of amount of calcite. These could be formed by different sedimentary environment, degree of cementation and recrystallization, different saline/fresh water, etc.