Self-Assembled Nanoparticles of Bile Acid-Modified Glycol Chitosans and Their Applications for Cancer Therapy

  • Kim Kwangmeyung (Biomedical Research Center, Korea Institute of Science and Technology, KIST Regional Laboratory in Advanced Medical Technology Cluster for Diagnosis & Prediction) ;
  • Kim Jong-Ho (Biomedical Research Center, Korea Institute of Science and Technology, KIST Regional Laboratory in Advanced Medical Technology Cluster for Diagnosis & Prediction) ;
  • Kim Sungwon (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Chung Hesson (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Choi Kuiwon (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Kwon Ick Chan (Biomedical Research Center, Korea Institute of Science and Technology, KIST Regional Laboratory in Advanced Medical Technology Cluster for Diagnosis & Prediction) ;
  • Park Jae Hyung (Department of Advanced Polymer and Fiber Materials, College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Kim Yoo-Shin (Department of Biochemistry, School of Medicine, Kyungpook National University, Advanced Medical Technology Cluster for Diagnosis & Prediction) ;
  • Park Rang-Won (Department of Biochemistry, School of Medicine, Kyungpook National University, Advanced Medical Technology Cluster for Diagnosis & Prediction) ;
  • Kim In-San (Department of Biochemistry, School of Medicine, Kyungpook National University, Advanced Medical Technology Cluster for Diagnosis & Prediction) ;
  • Jeong Seo Young (Department of Pharmaceutics, College of Pharmacy, Kyung Hee University)
  • Published : 2005.06.01

Abstract

This review explores recent works involving the use of the self-assembled nanoparticles of bile acid-modified glycol chitosans (BGCs) as a new drug carrier for cancer therapy. BGC nanoparticles were produced by chemically grafting different bile acids through the use of l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). The precise control of the size, structure, and hydrophobicity of the various BGC nanoparticles could be achieved by grafting different amounts of bile acids. The BGC nanoparticles so produced formed nanoparticles ranging in size from 210 to 850 nm in phosphate-buffered saline (PBS, pH=7.4), which exhibited substantially lower critical aggregation concentrations (0.038-0.260 mg/mL) than those of other low-molecular-weight surfactants, indicating that they possess high thermodynamic stability. The SOC nanoparticles could encapsulate small molecular peptides and hydrophobic anticancer drugs with a high loading efficiency and release them in a sustained manner. This review also highlights the biodistribution of the BGC nanoparticles, in order to demonstrate their accumulation in the tumor tissue, by utilizing the enhanced permeability and retention (EPR) effect. The different approaches used to optimize the delivery of drugs to treat cancer are also described in the last section.

Keywords

References

  1. K. Akiyoshi and J. Sunamoto, Surfactants Sci. Ser., 44, 289 (1992)
  2. K. Akiyoshi, S. Deguchi, N. Moriguchi, S. Yamaguchi, and J. Sunamoto, Macromolecules, 26, 3062 (1993) https://doi.org/10.1021/ma00064a011
  3. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Science, 263, 1600 (1994) https://doi.org/10.1126/science.8128245
  4. Y. Nagasaki, K. Yasugi, Y. Yamamoto, A. Harada, and K. Kataoka, Biomacromolecules, 2, 1067 (2001) https://doi.org/10.1021/bm005642t
  5. K. Kataoka, A. Harada, and Y. Nagasaki, Adv. Drug. Deliv. Rev., 47, 113 (2001) https://doi.org/10.1016/S0169-409X(00)00117-4
  6. G. S. Kwon and T. Okano, Adv. Drg Deliv. Rev., 21, 107 (1996) https://doi.org/10.1016/S0169-409X(96)00401-2
  7. H. S. Yoo and T. G. Park, J. Control. Release, 70, 63 (2001) https://doi.org/10.1016/S0168-3659(00)00339-4
  8. Y. Matsumura and H. Maeda, Cancer Res., 46, 6387, (1986)
  9. Y. Matsumura and H. Maeda, Cancer Res., 46, 6387, (1986)
  10. G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, Pharm. Res., 12, 192 (1995) https://doi.org/10.1023/A:1016266523505
  11. M. Yokoyama, S. Inoue, K. Kataoka, N. Yui, T. Okano, and Y. Sakurai, Macromol. Chem., 190, 2041, (1989) https://doi.org/10.1002/macp.1989.021900904
  12. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, Cancer Res., 50, 1693, (1990)
  13. H. Hashizume, P. Baluk, S. Morikawa, J. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, Am. J. Pathol., 156, 1363, (2000) https://doi.org/10.1016/S0002-9440(10)65006-7
  14. Q. Li, E. T. Lunn, E. W. Grandmaison, and M. F. A. Goosen, in Applications of Chitin and Chitosan, M. F. A. Goosen, Ed., Technomic Publishing Co., Inc., Lancaster, 1997, p. 3
  15. E. Ruel-Gariepy, G. Leclair, P. Hildgen, A. Gupta, and J. C. Leroux, J. Control. Release, 82, 373 (2002) https://doi.org/10.1016/S0168-3659(02)00146-3
  16. Y. Zhang and M. Zhang, J. Biomed. Mater. Res., 62, 378, (2002) https://doi.org/10.1002/jbm.10312
  17. I. F. Uchegbu, L. Sadiq, M. Arastoo, A. I. Gray, W. Wang, R. D. Waigh, and A. G. Schatzleina, Int. J. Pharm., 224, 185 (2001) https://doi.org/10.1016/S0378-5173(01)00731-1
  18. X. G. Chen, C. M. Lee, and H. J. Park, J. Agric. Food Chem., 51, 3135 (2003) https://doi.org/10.1021/jf0202842
  19. K. Y. Lee, W. H. Jo, I. C. Kwon, Y. Kim, and S. Y. Jeong, Macromolecules, 31, 378 (1998) https://doi.org/10.1021/ma9711304
  20. K. Y. Lee, I. C. Kwon, Y. H. Kim, W. H. Jo, and S. Y. Jeong,, J. Control. Release, 51, 213 (1998) https://doi.org/10.1016/S0168-3659(97)00173-9
  21. Y. H. Kim, S. H. Gihm, C. R. Park, K. Y. Lee, T. W. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong, Bioconjugate Chem., 12, 932 (2001) https://doi.org/10.1021/bc000176q
  22. C. Qin, Y. Du, L. Xiao, Z. Li, and X. Gao, Int. J. Bio. Macromol., 69, 97 (2002)
  23. M. Yalpani and L. D. Hall, Macromolecules, 17, 272 (1984) https://doi.org/10.1021/ma00133a003
  24. M. Sugimoto, M. Morimoto, H. Sashiwa, H. Saimoto, and Y. Shigemasa, Carbohydr. Polym., 36, 49 (1998) https://doi.org/10.1016/S0144-8617(97)00235-X
  25. T. H. Kim, I. K. Park, J. W. Nah, Y. J. Choi, and C. S. Cho, Biomaterials, 25, 3783 (2004) https://doi.org/10.1016/j.biomaterials.2003.10.063
  26. S. Kwon, J. H. Park, H. Chung, I. C. Kwon, S. Y. Jeong, and I. Kim, Langmuir, 19, 10 188 (2003)
  27. Y. J. Son, J. S. Jang, Y. W. Cho, H. Chung, R.W. Park, I. C. Kwon, I. Kim, J. Y. Park, S. B. Seo, C. R. Park, and S. Y. Jeong, J. Control. Release, 91, 135 (2003) https://doi.org/10.1016/S0168-3659(03)00231-1
  28. J. H. Park, S. Kwon, J. Nam, R. Park, H. Chung, S. B. Seo, I. Kim, and I. C. Kwon, J. Control. Release, 95, 579 (2004) https://doi.org/10.1016/j.jconrel.2003.12.020
  29. K. Kim, S. Kwon, J. H. Park, H. Chung, S. Y. Jeong, and I. C. Kwon, Biomacromolecules, 6, 1154 (2005) https://doi.org/10.1021/bm049305m
  30. A. Enhsen, W. Kramer, and Wess, Drug Discov. Today, 3, 409 (1998) https://doi.org/10.1016/S1359-6446(96)10046-5
  31. M. Wilhelm, C. Zhao, Y. Wang, R. Xu, M. A. Winnik, J. Mura, G. Riess, and M. D. Croucher, Macromolecules, 24, 1033 (1991) https://doi.org/10.1021/ma00005a010
  32. K. M. Huh, S. C. Lee, S. W. Kang, I. C. Kwon, Y. Kim, and S. Y. Jeong, Langmuir, 16, 10566 (2000) https://doi.org/10.1021/la000978+
  33. S. Barnes, and D. N. Kirk, in The Bile Acids, chemistry, Physiology, and Metabolism, K. K. R. Setchell, D. Kritchevsky, and P. P. Nair, Eds., Plenum Press, New York, 1988, vol. 4, p. 68
  34. G. D. Grossfeld, R. R. Carrol, and N. Lindeman, Urology, 59, 97 (2002) https://doi.org/10.1016/S0090-4295(01)01449-2
  35. H. Hashizume, P. Baluk, S. Morikawa, J. McLean, G. Thurston, S. Roberge, R.K. Jain, and D.M. McDonald, Am. J. Pathol., 156, 1363 (2000) https://doi.org/10.1016/S0002-9440(10)65006-7
  36. S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Driffith, V. P. Torchilin, and R. K. Jain, Med. Sci., 95, 4607 (1998)
  37. P. Carmeliet and R. K. Jain, Nature, 407, 249 (2000) https://doi.org/10.1038/35025220
  38. E. Ruoslahti, Nat. Rev. Cancer, 2, 83 (2002) https://doi.org/10.1038/nrc724
  39. M. Friedlander, P. C. Brooks, R. W. Shaffer, C. M. Kincaid, J. A. Varner, and D. A. Cheresh, Science, 270, 1500 (1995) https://doi.org/10.1126/science.270.5241.1500
  40. H. P. Hammes, M. Brwonlee, A. Jonczyk, A. Sutter, and K. T. Preissner, Nat. Med., 2, 529 (1996) https://doi.org/10.1038/nm0596-529
  41. M. A. Burg, R. Pasqualini, W. Arap, E. Rouslahti, and W. B. Stallcup, Cancer Res., 59, 2869 (1999)
  42. P. C. Brooks, R. A. Clark, and D. A. Cheresh, Science, 264, 569 (1994) https://doi.org/10.1126/science.264.5161.994
  43. A. Erdreich-Epstein, H. Shimada, S. Groshen, M. Liu, L. S. Metelitsa, K. S. Kim, M. F. Stins, R. C. Seeger, and D. L. Durden, Cancer Res., 60, 712 (2000)
  44. P. C. Brooks, A. M. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. Hu, G. Klier, and D. A. Cheresh, Cell, 79, 1157 (1994)
  45. B. P. Eliceiri and D. A. Cheresh, J. Clin. Invest., 103, 1227 (1999) https://doi.org/10.1172/JCI4874
  46. H. N. Lode, T. Moehler, R. Xiang, A. Jonczyk, S. D. Gillies, D. A. Cheresh, and R. A. Reisfeld, Proc. Natl. Acad. Sci. U. S. A., 96, 1591 (1999)
  47. K. Park and R. J. Mrsny, ACS Symposium Series, American Chemical Society, Washington, DC, 2000, vol. 752, pp 2-12
  48. J. O. Nam, J. E. Kim, H. W. Jeong, J. O. Nam, B. H. Lee, J. Y. Choi, R. W. Park, J. Y. Park, and I. S. Kim, J. Bio. Chem., 278, 25902 (2003) https://doi.org/10.1074/jbc.M300358200
  49. H. S. Yoo and T. G. Park, Polymer Preparation, 41, 992 (2000)
  50. V. Omelyaneko, P. Kopeckova, C. Gentry, and J. Kopeck, J. Control. Release, 53, 25 (1998) https://doi.org/10.1016/S0168-3659(97)00235-6
  51. M. Dvorak, P. Kopeckova, and J. Kopeck, J. Control. Release, 60, 321 (1999) https://doi.org/10.1016/S0168-3659(99)00087-5
  52. Z. Zhu, J. Kralovec, T. Ghose, and M. Mammen, Cancer Immunol. Immunother., 40, 257 (1995)