The food service industry is a major driver of global sustainable food consumption. By understanding food consumption behavior, restaurant managers can forecast demands and reduce pre-consumer food waste. This study investigates the relationship between influencing factors and the number of customers at restaurants and cafés. These factors are weather-related factors, including rain and temperature, and school-related factors, including exams and the day of the week. Based on these four factors, 24 possible combinations were created. Three representtive days were chosen for each weekday combination. Besides, one representative day was chosen for each weekend combination. In total, 48 days were sampled throughout the year. Customer data were collected from six restaurants and cafes on a Korean university campus. Conjoint analysis was used to determine the relative importance of each variable to customer numbers. Following that, utility scores were standardized and mapped to determine the best condition when the number of customers was at its peak. In addition, each store's sales were compared using Pearson's Correlation Coefficient. The findings support that temperature and rain influences are correlated with the number of customers. Furthermore, we discovered that temperature was far more significant than rain in determining the number of customers. The paper discusses the implications of weather to forecast food and beverage demand and predict meal choices.
Park, Won-Hui;Kim, Dae-Gap;Kim, Ki-Sun;Lee, Sang-Won;Lee, Myun-Woo
Journal of the Ergonomics Society of Korea
/
v.26
no.1
/
pp.79-85
/
2007
Demand forecasting methods for a consumer product such as TV or refrigerator are widely known. However, sales forecast for a brand new product cannot be estimated using conventional forecasting methods. This study proposes a five-step procedure in forecasting a newly developed product. Step one defines functions in a High Touch product in order to estimate relative attraction of the product to consumer group. In step two, for a comparison purpose, a compatible product that is successfully penetrated into market is selected. Step three breaks a target population into many segments based on demography. Step four calculates relative attraction between the High Touch product and the compatible product. Finally, market penetration rate of the High Touch product is estimated using a bell-shaped diffusion curve of the compatible product. The process offers a method to estimate potential demand and growth pattern of the new High Touch product.
Purpose The purpose of this study is to explore the optimal trading frequency which is useful for stock price prediction by using deep learning for charting image data. We also want to identify the appropriate time for accurate forecasting of stock price when performing pattern analysis. Design/methodology/approach In order to find the optimal trading frequency patterns and forecast timings, this study is performed as follows. First, stock price data is collected using OpenAPI provided by Daishin Securities, and candle chart images are created by data frequency and forecasting time. Second, the patterns are generated by the charting images and the learning is performed using the CNN. Finally, we find the optimal trading frequency patterns and forecasting timings. Findings According to the experiment results, this study confirmed that when the 10 minute frequency data is judged to be a decline pattern at previous 1 tick, the accuracy of predicting the market frequency pattern at which the market decreasing is 76%, which is determined by the optimal frequency pattern. In addition, we confirmed that forecasting of the sales frequency pattern at previous 1 tick shows higher accuracy than previous 2 tick and 3 tick.
This study suggested how to apply it decision-making of product development rapidly by design evaluation process to objectify and the result to quantify with viewpoint of design evaluation sets to marketability. Coverage of this method limited to the evaluation stage of design concept. The procedure of study, first of all, referred to some type of design evaluation method and their feature. And next, referred to some kinds of demand forecasting for marketing. Above an, this study focused on the method of demand forecasting by buying intentions surveys proper to the marketability evaluation of new product design. On a case study, I had investigated preference survey and buying intentions surveys about the design proposal of "language master audio". I selected the best design proposal through the conjoint analysis and also investigated demand forecasting. First, on the basis of buying intentions surveys, choose population and had produced buying demand, awareness demand, potential demand. I could estimate some profit to take out expense and cost from the buying demand. This estimated profit is marketability judgement data of product design at the design concept stage and can be utilized to measurable data for decision-making of product development. Through the case study, this method could forecast a target demand, and even if it is some difference between real sales volume, but the case study could verified that this method is effective to the evaluation of marketability in case of completely new product got on the typical category and the product category could be set up the population clearly.
The purpose of this study is to estimate consumer preferences on hybrid cars and electric cars by employing a choice experiment reflecting the various market conditions, such as different projected market shares of green vehicles and $CO_2$ emission regulations. Depending on different market scenarios, we examine as to which attribute and individual characteristic affect the preferences of potential consumers on green vehicles and further, forecast the potential market shares of green cars. The primary results, estimated by a conditional logit and panel probit models, indicate that sales price, fuel cost, maximum speed, emission of air pollutants, fuel economy, and distance between fuel stations can significantly affect consumer's choice of environment-friendly cars. The second finding is that the unique features of electric cars might better appeal to consumers as the market conditions for electric cars are improved. Third, education, age, and gender can significantly affect individual preferences. Finally, as the market conditions become more favorable toward green cars, the forecasted market shares of hybrid and electric vehicles will increase up to 67% and 14%.
Journal of Korean Society of Industrial and Systems Engineering
/
v.43
no.3
/
pp.61-67
/
2020
The fourth industrial revolution encourages manufacturing industry to pursue a new paradigm shift to meet customers' diverse demands by managing the production process efficiently. However, it is not easy to manage efficiently a variety of tasks of all the processes including materials management, production management, process control, sales management, and inventory management. Especially, to set up an efficient production schedule and maintain appropriate inventory is crucial for tailored response to customers' needs. This paper deals with the optimized inventory policy in a steel company that produces granule products under supply contracts of three targeted on-time delivery rates. For efficient inventory management, products are classified into three groups A, B and C, and three differentiated production cycles and safety factors are assumed for the targeted on-time delivery rates of the groups. To derive the optimized inventory policy, we experimented eight cases of combined safety stock and data analysis methods in terms of key performance metrics such as mean inventory level and sold-out rate. Through simulation experiments based on real data we find that the proposed optimized inventory policy reduces inventory level by about 9%, and increases surplus production capacity rate, which is usually used for the production of products in Group C, from 43.4% to 46.3%, compared with the existing inventory policy.
This study presents a web log analysis model for e-CRM, which combines the on-line customer's purchasing pattern data and transaction data between companies in B2B environment of make-to-order company. With this study, the customer evaluation and the customer subdivision are available. We can forecast the estimate demands with periodical products sales records. Also, the purchasing rate per each product, the purchasing intention rate, and the purchasing rate per companies can be used as the basic data for the strategy for receiving the orders in future. These measures are used to evaluate the business strategy, the quality ability on products, the customer's demands, the benefits of customer and the customer's loyalty. And it is used to evaluate the customer's purchasing patterns, the response analysis, the customer's secession rate, the earning rate, and the customer's needs. With this, we can satisfy various customers' demands, therefore, we can multiply the company's benefits. And we presents case of the 'H' company, which has the make-to-order manufacture environment, in order to verify the effect of the proposal system.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.2
/
pp.152-159
/
2023
Due to COVID-19, changes in consumption trends are taking place in the distribution sector, such as an increase in non-face-to-face consumption and a rapid growth in the online shopping market. However, it is difficult for small and medium-sized export sellers to obtain forecast information on the export market by country, compared to large distributors who can easily build a global sales network. This study is about the prediction of export amount and export volume by country and item for market information analysis of small and medium export sellers. A prediction model was developed using Lasso, XGBoost, and MLP models based on supervised learning and deep learning, and export trends for clothing, cosmetics, and household electronic devices were predicted for Korea's major export countries, the United States, China, and Vietnam. As a result of the prediction, the performance of MAE and RMSE for the Lasso model was excellent, and based on the development results, a market analysis system for small and medium sellers was developed.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.22
no.2
/
pp.63-70
/
2008
This paper resents the spatial electric load forecasting algorithm using the multiple regression analysis method which is enhanced from the algorithm of the DISPLAN(Distribution Information System PLAN). In order to improve the accuracy of the spatial electrical load forecasting, input variables are selected for GRDP(Gross Regional Domestic Product), the local population and the electrical load sales of the past year. Tests are performed to analyze the accuracy of the proposed method for Gyeong-San City, Gu-Mi City, Gim-Cheon City and Yeong-Ju City of North Gyeongsang Province. Test results show that the overall accuracy of the proposed method is improved the percentage error 11.2[%] over 12[%] of the DISPLAN. Specially, the accuracy is enhanced a lot in the case of high variability of input variables. The proposed method will be used to forecast local electric loads for the optimal investment of distribution systems.
Journal of the Korean Data and Information Science Society
/
v.28
no.2
/
pp.287-295
/
2017
Since Google's AlphaGo defeated a world champion of Go players in 2016, there have been many interests in the deep learning. In the financial sector, a Robo-Advisor using deep learning gains a significant attention, which builds and manages portfolios of financial instruments for investors.In this paper, we have proposed the a deep learning algorithm geared toward identification and forecast of the KOSPI index direction,and we also have compared the accuracy of the prediction.In an application of forecasting the financial market index direction, we have shown that the Robo-Advisor using deep learning has a significant effect on finance industry. The Robo-Advisor collects a massive data such as earnings statements, news reports and regulatory filings, analyzes those and recommends investors how to view market trends and identify the best time to purchase financial assets. On the other hand, the Robo-Advisor allows businesses to learn more about their customers, develop better marketing strategies, increase sales and decrease costs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.