DOI QR코드

DOI QR Code

The Relationship between Weather and Meal choices: A Case Study of Restaurants and Cafés on Korean University Campus

날씨와 식사 선택의 관계: 한국대학 캠퍼스 내 식당과 카페의 사례연구

  • Received : 2022.10.30
  • Accepted : 2022.12.20
  • Published : 2022.12.31

Abstract

The food service industry is a major driver of global sustainable food consumption. By understanding food consumption behavior, restaurant managers can forecast demands and reduce pre-consumer food waste. This study investigates the relationship between influencing factors and the number of customers at restaurants and cafés. These factors are weather-related factors, including rain and temperature, and school-related factors, including exams and the day of the week. Based on these four factors, 24 possible combinations were created. Three representtive days were chosen for each weekday combination. Besides, one representative day was chosen for each weekend combination. In total, 48 days were sampled throughout the year. Customer data were collected from six restaurants and cafes on a Korean university campus. Conjoint analysis was used to determine the relative importance of each variable to customer numbers. Following that, utility scores were standardized and mapped to determine the best condition when the number of customers was at its peak. In addition, each store's sales were compared using Pearson's Correlation Coefficient. The findings support that temperature and rain influences are correlated with the number of customers. Furthermore, we discovered that temperature was far more significant than rain in determining the number of customers. The paper discusses the implications of weather to forecast food and beverage demand and predict meal choices.

외식서비스산업은 지속가능한 세계 식품 소비의 주요 원동력이다. 외식소비행동을 이해함으로써, 식당 관리자들은 수요를 예측하고 소비 전(前)단계에서 음식 낭비를 줄일 수 있다. 본 연구는 식당과 카페의 영향요인과 고객 수 간의 관계를 조사한다. 이러한 요인들은 비와 기온을 포함한 날씨와 관련된 요인들과 시험 기간과 요일을 포함한 학교 관련 요인들이다. 이 네 가지 요인에 기초하여 가능한 조합은 24개였다. 각 평일 조합에 대해서는 3가지 요일을 대표일로 정하였다. 각 주말 조합에 대해서는 1가지 요일을 대표일로 정하였다. 일 년 중 총 48일이 표본으로 추출되었다. 고객 자료는 한국의 한 대학 캠퍼스에 있는 6개의 식당과 카페에서 수집되었다. 고객 수에 대한 각 변수의 상대적 중요도를 결정하기 위해 컨조인트 분석(Conjoint Analysis)이 사용되었다. 이어 효용 값 (Utility Score)를 표준화하여 고객 수가 최고점에 도달했을 때 최적의 상태를 찾도록 매핑 (Mapping) 하였다. 또한 피어슨 상관 계수(Pearson's Correlation Coefficient)를 사용하여 각 점포의 매출을 비교하였다. 본 연구 결과는 온도와 비의 영향이 고객 수와 상관관계가 있다는 것을 뒷받침하였다. 또한, 고객 수를 예측하는 데 있어서 온도가 비보다 훨씬 더 중요하다는 것이 발견되었다. 본 논문은 식음료 수요를 예측하고 식사 선택을 예측하기 위해 날씨를 사용하는 것의 시사점에 대해 논의하였다.

Keywords

Acknowledgement

We wish to thank various people for their contribution to this research; restaurant store managers for providing data that are fundamental to this work; Professor Hyeon-Jeong Suk for her constructive suggestions during the planning and development of this research; and Hoyong Kang for his assistance with the survey data collection and make this research run smoothly.

References

  1. Akhtari, M. (2011). Reassessment of the weather effect: Stock prices and wall street weather. Undergraduate Economic Review, 7(1), 19. 
  2. Cawthorn, C. (1998). Weather as a strategic element in demand chain planning. The Journal of Business Forecasting, 17(3), 18. 
  3. Chu, K., Kim, S. and Choi, C. (2013). A Study on the Impact of Weather on Sales and Optimal Budget Allocation of Weather Marketing. Journal of the Korean Operations Research and Management Science Society, 38(1), 153-181. doi:10.7737/JKORMS.2013.38.1.153. 
  4. Cohen, T. (2011). Supermarkets use weather predictions to decide what to stock. TheDailyMail. Available online: http://www.dailymail.co.uk/news/article-2026439/Supermarkets-use-weather-predictions-decide-stock.html 
  5. Davis, B., Lockwood, A., Alcott, P., & Pantelidis, I. S. (2018). Food and beverage management. Routledge. doi:10.4324/9781315563374 
  6. De Castro, J. M. (1991). Seasonal rhythms of human nutrient intake and meal pattern. Physiology & behavior, 50(1), 243-248. doi:10.1016/0031-9384(91)90527-u. 
  7. Deryugina, T. and Hsiang, S. M. (2014). Does the Environment Still Matter? Daily Temperature and Income in the United States (No. w20750). National Bureau of Economic Research. doi:10.3386/w20750. 
  8. Edwards, C. (2012). The future is in there... somewhere [supply chain systems]. Engineering & Technology, 7(12), 74-77. doi:10.1049/et.2012.1220. 
  9. FAO (2016). Key facts on food loss and waste you should know! 
  10. Gustavsson, J., Cederberg, C., & Sonesson, U. (2011). Global Food Losses and Food Waste. 
  11. Howarth, E. and Hoffman, M. S. (1984). A multidimensional approach to the relationship between mood and weather. British Journal of Psychology, 75(1), 15-23. doi:10.1111/j.2044-8295.1984.tb02785.x. 
  12. IMARC. (2021). Food Service Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast, 2022-2027. Available online: https://www.imarcgroup.com/food-service-market 
  13. Johnson, R. E. and Kark, R. M. (1947). Environment and Food Intake in Man. Science, 105(2728), 378-379. doi:10.1126/science.105.2728.378. 
  14. Lins, M., Puppin Zandonadi, R., Raposo, A., & Ginani, V. C. (2021). Food Waste on Food service: An Overview through the Perspective of Sustainable Dimensions. Foods, 10(6), 1175. doi:10.3390/foods10061175 
  15. Ma, Y. et al. (2006). Seasonal variation in food intake, physical activity, and body weight in a predominantly overweight population. European journal of clinical nutrition, 60(4), 519-528. doi:10.1038/sj.ejcn.1602346. 
  16. Markowitz, E. (2011). Outsmarting Mother Nature, inc.com. Available online: https://www.inc.com/articles/201103/outsmarting-mother-nature-and-targeting-consumers.html 
  17. Parsons, A. G. (2001). The Association between Daily Weather and Daily Shopping Patterns. Australasian Marketing Journal, 9(2), 78-84. doi:10.1016/S1441-3582(01)70177-2. 
  18. Posch, K. et al. (2022). A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants. International Journal of Forecasting, 38(1), 321-338. doi:10.1016/j.ijforecast.2021.06.001 
  19. Ramanathan, U. and Muyldermans, L. (2010). Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK. International Journal of Production Economics, 128(2), 538-545. doi:10.1016/j.ijpe.2010.07.007. 
  20. Starr-McCluer, M. (2000). The effects of weather on retail sales. doi:10.2139/ssrn.221728 
  21. Sustainable Restaurant Association (2010). Too Good to Waste: Restaurant Food Waste Survey Report. 
  22. United Nations (2016). United Nations Development Programme, Sustainable Development Goals. Available online : https://sdgs.un.org/goals/goal12