• Title/Summary/Keyword: safflower yellow

Search Result 44, Processing Time 0.031 seconds

Morphological characters, Total phenolic content, and Fatty Acid Compositions of Safflower (Carthamus tinctorius) Genetic Resources

  • Awraris Derbie Assefa;Young Jee Kim;Ae-Jin Hwang;Bich-Saem Kim;Jae-Eun Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.94-94
    • /
    • 2020
  • Safflower, a draught and salt tolerant oil seed crop of Compositae family, has been cultivated around the world mainly as source of edible oils and dyes, where India, the USA, Mexico, Australia, and Ethiopia contributing about 85% of the production altogether. In this study we have characterized some selected morphological properties of safflower plant and determined the the total phenolic content (TPC) and fatty acid composition in seeds of 237 genetic resources. All the seed coats were white colored while the petals had red, yellow and white pigments. The yellow was the predominant petal color being recorded in 182 accessions followed by red occurring in 49 accessions. The petal color of 47 of the accessions changed with development while the 190 accession showed no change of color. The leaves are ovate to obovate, mostly with dentate (21 moderate and 205 weak) and few smooth (11) margins. The plant length, leaf length, and leaf width were ranged between 65.7 and 160.8 cm, 14.3 and 37.0 cm, and 3.3 and 12.1 cm, respectively. The TPC was determined using Folin-Ciocalteu method and fatty acid compositions were evaluated using gas chromatography. The TPC content ranged from 23.71 to 132.72 µgGAE/mg dried extract (DE). The seeds of safflower genetic resources accounted an average crude fat content of 26.25% (14.84 to 41.70%). The total fatty acid is mainly comprised of 71.72% linoleic acid (18:2) and 20.08% oleic acid (18:1) on average, the remaining palmitic acid (16:0), stearic acid (18:0) and linolenic acid (18:3) contributing 5.84, 2.23 and 0.15 %, respectively. The fatty acid composition of safflower seeds has shown great variability, where oleic and linoleic acid have a wide range of variation, from 9.23 to 83.35% and from 10.46 to 82.62%, respectively

  • PDF

Metabolic Discrimination of Safflower Petals of Various Origins Using 1H NMR Spectroscopy and Multivariate Statistical Analysis

  • Whang, Wan-Kyun;Lee, Min-Won;Choi, Hyung-Kyoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.557-560
    • /
    • 2007
  • The metabolic discrimination of safflowers from various geographical origins was performed using 1H nuclear magnetic resonance (NMR) spectroscopy followed by principal components analysis. With a combination of these techniques, safflower samples from different origins could be discriminated using the first two principal components (PC) of the 1H NMR spectra of the 50% methanol fractions. PC1 and PC2 accounted cumulatively for 91.3% of the variation in all variables. The major peaks in the 1H NMR spectra that contributed to the discrimination were assigned to fatty acid (terminal CH3), lactic acid, acetic acid, choline derivatives, glycine, and safflower yellow derivatives. In this study, we suggest that various types of safflower can be discriminated using PCA and 1H NMR spectra.

Occurrence of Powdery Mildew on Safflower Caused by Sphaerotheca fuliginea in Korea

  • Kwon, Jin-Hyeuk;Kang, Soo-Woong;Lee, Heung-Su;Park, Chang-Seuk
    • Mycobiology
    • /
    • v.28 no.1
    • /
    • pp.51-53
    • /
    • 2000
  • The powdery mildew of safflower (Carthamus tinctorius L.) extensively occurred at 1999 at the experimental farm of Kyongsangnam-do Agricultural Research and Extension Services. Both sides of the leaves and the older stems were covered with the fungus, and then the leaves and stems turned yellow. The conidia, conidiophores and perithecia were observed on the leaf lesion. Perithecia were ellipsoidal, $80-117\;{\mu}m$ in diameter. Asci were subglobose and $84{\sim}99{\times}59{\sim}73\;{\mu}m$ in size. Ascospore were ellipsoidal to ovoid, and $15{\sim}34{\times}11{\sim}23\;{\mu}m$ in size. Conidia were ellipsoid to barrel-shaped, $25{\sim}37{\times}11{\sim}22\;{\mu}m$ in size and formed in long chains. The causal organism was identified as Sphaerotheca fuliginea. This is the first report on powdery mildew of safflower caused by Sphaerotheca fuliginea in Korea.

  • PDF

Improving UV-cut Ability of Natural Dyed Fabrics - Focused on Cellulose Fabrics Dyed with Safflower Yellow Colorants - (천연염색 직물의 자외선 차단 성능 증진 연구 - 홍화 황색소 염색 셀룰로오스 직물을 중심으로 -)

  • Shin, Youn-Sook;Choi, Seung-Youn
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.10
    • /
    • pp.73-81
    • /
    • 2007
  • The purpose of this study was to increase the ultraviolet-light (UV)-cut ability of cellulose fabrics (cotton, ramie, and rayon) dyed with safflower yellow colorants. For this purpose, samples treated with UV-cut agent and tannic-acid were compared with the untreated samples after UV exposure in terms of K/S value, color changes(${\Delta}E$), SEM, and strength retention. The K/S value rapidly decreased after 28 days exposure, whereas the K/S value of the samples treated with both UV-cut agent and tannic-acid decreased to less than that of the untreated samples. In color changes, $L^*$ increased while $a^*$ and $b^*$ decreased, indicating less red and yellow character in color. This induced a change in the hue, value and chroma values. However the color change(${\Delta}E$) of the samples treated with both UV-cut agent and tannic-acid was less than that of the untreated samples. Scanning electron microscopy (SEM) pictures showed a severe degradation by exposure in all samples. Tensile strength rapidly decreased after 28 days for cotton and rayon, and after 21 days for ramie. However, the strength retention of the samples treated with UV-cut agent and tannic-acid was higher than that of the untreated samples.

Dyeing Properties and Color of Silk Fabrics Dyed with Safflower Yellow Dye (홍화 황색소 견섬유에 대한 염색성과 색상)

  • Shin, Youn-Sook;Son, Kyung-Hee;Yoo, Dong-Il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.6
    • /
    • pp.928-934
    • /
    • 2008
  • The objective of this study is to investigate the dyeing properties of safflower yellow dye on silk for the standardization of dyeing process and color reproducibility. Yellow colorants were water-extracted from safflower petals, concentrated, and freeze-dried to obtain colorants powder. The effects of dye concentration, dyeing temperature, and pH of dye bath were studied in terms of dye uptake and shade. Fastness to dry cleaning and light was evaluated. Dye uptake increased with raising temperature and brighter and more vivid yellow shade was obtained when dyed at $30^{\circ}C$. As colorants concentration increased, dye uptake increased progressively and the shade got darker and deeper. Maximum color strength was obtained at pH 3.5. It was speculated that the adsorption of colorants seemed to occur mainly by hydrogen bonding and physical force at pH 5.5 and by ionic bonding as well as hydrogen bonding below isoelectric point(pH 3.8-4.0). The results of reproducibility test showed acceptable color difference in the range of $1.11{\sim}2.01$. Washing fastness was fairly good as 4/5 rating, while light fastness was 2/3 rating.

A Research on Dye and Color in Korean Traditional Colors of Clothing (한국(韓國) 전통복색(傳統과 염채(染采)에 관한 연구(硏究))

  • Soh, Hwang-Ok
    • Journal of the Korean Society of Costume
    • /
    • v.6
    • /
    • pp.161-171
    • /
    • 1982
  • The idea of King Hungdok's prohibition of clothing was to restrict the use of chinese-made cloth on the one hand and to compell his people to use Korean-made cloth for their apparel on the other. The prohibition of clothing sprang from King Hungdok's aspiration to restore his dynasty that had been falling due to the repeated drought disaster and luxurious living of the aristocracy. Safflower, Rubeaceae roots and Sapan wood are well known as some of the earliest natural red-dyes, exhibiting beautiful red-color in our anciet cultural tradition. The color yellow was considered from ancient time to the Chosun Dynasty as the central color. Thus, this color became the royal color for the costumes in the palace. Those plants used to make the color yellow are: Gardenia, phellodendron amurense, Turmeric, coptis, safflower, Arthraxon hispidus, Styphnolobium japonicum. Shikon, root of violet plant, is well known as one of the earliest natural days. By repeating the difficult process of making various dyes constantly during many centuries, the Korean people developed the marvelous technique of making natural color.

  • PDF

Improving Dyeability of Safflower Yellow Colorants on Cellulose Fibers (홍화 황색소의 셀룰로오스 섬유에 대한 염착성 증진)

  • Shin, Youn-Sook;Cho, A-Rang;Yoo, Dong-Il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1754-1760
    • /
    • 2007
  • To improve poor dye uptake of safflower yellow colorants, cellulose fibers were pretreated with chitosan. The effect of chitosan pretreatment on the dyeability of safflower yellow colorants to cotton, ramie, and rayon was investigated in terms of dye uptake, color, and colorfastness. Irrespective of fiber types, dye uptake increased continuously with increase in chitosan concentration. Chitosan pretreatment improved dye uptake up to 5.6 times for cotton, 7.2 times for ramie, and 3.7 times for rayon. For cotton and ramie, the shade of dyed fabric changed YR color to Y color with increase in chitosan concentration. Dyed rayon fabrics showed Y color irrespective of chitosan concentration. Shades got darker and deeper with increasing chitosan concentration. Shades of chitosan pretreated fabrics were shifted differently depending on dyeing temperature within same fabrics. In common, the color of all dyed fabrics changed to YR at 50 and $70^{\circ}C$ while Y color at 30 and $90^{\circ}C$. V and C value decreased with increase in dyeing temperature and resulted in darker and duller color, in general. Light fastness was fair while washing fastness was poor. It was confirmed that ultrasonic dyeing method enhanced dye uptake more than 30% for cotton and ramie fabrics compared to the conventional automatic machine dyeing method. However, no difference in dye uptake between two dyeing methods was found for rayon.

Optimization of Wool Dyeing with Yellow Dye from Carthamus Tinctorius L. (홍화 황색소를 이용한 모염색의 최적화)

  • Shin, Youn-Sook;Son, Kyung-Hee;Yoo, Dong-Il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.12
    • /
    • pp.1971-1978
    • /
    • 2009
  • This study investigated the adsorption of safflower yellow dye on wool protein fiber and the optimum dyeing conditions to test color reproducibility. In addition, the effects of mordants on dye adsorption, color, fastness, and photofading rate were also studied. The prepared dye in powder form was characterized with UV-vis spectroscopy and FT-IR spectrometric analysis. The color of dyed fabrics was characterized by CIE $L^*a^*b^*$ coordinates, H V/C, and K/S values. The color reproducibility of the dyed wool fabrics was examined. The amount of dye adsorption increased and also, the shade of the dyed wool fabrics became deeper and more saturated with increasing temperature, time, and dye concentration. The maximum color strength was obtained at pH 3.0. The shade of dyed wool fabrics ranged from light yellow to dark mustard yellow as the pH of the dye bath shifted from alkaline to acidic. Color reproducibility was reliable with color differences in the range of 0.53~1.75. Fastness to dry cleaning was relatively good at 4/5 rating irrespective of mordanting. Fe and Cu mordants showed the least color change of the dyed wool fabrics after exposure to light. Mordants did not contribute to improve dye uptake and color fastness, although they made variations in color tone. Safflower yellow dye can be used satisfactorily without mordants and will not cause damage to the environment.

Storage Stability and Color Reproducibility of Yellow and Red Dyes Extracted from Carthamus tinctorius L.

  • Shin, Youn-Sook;Yoo, Dong-Il
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.165-172
    • /
    • 2012
  • The stability of yellow and red dyes prepared from safflower (Carthamus tinctorius L.) in aqueous solution and in solid state was investigated. External factors such as light irradiation and temperature on the stability were examined during storage. Changes in absorbance of dye solutions and the color changes of fabrics dyed after long time storage were measured. Also, color reproducibility during storage was investigated by dyeing test on various fabrics. Red colorant in aqueous solution was very unstable to light, resulting that about 40% of absorbance were lost in 12hrs. The absorbance of yellow dye solutions was not decreased within 84hrs. In aqueous medium, yellow dye was much more stable than carthamin. Both dyes are relatively stable for long storage when they are stored in solid state compared to when in aqueous solution. Color changes are marginal in both dyes.