• Title/Summary/Keyword: safety hazards

Search Result 925, Processing Time 0.031 seconds

Collision Hazards Detection for Construction Workers Safety Using Equipment Sound Data

  • Elelu, Kehinde;Le, Tuyen;Le, Chau
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.736-743
    • /
    • 2022
  • Construction workers experience a high rate of fatal incidents from mobile equipment in the industry. One of the major causes is the decline in the acoustic condition of workers due to the constant exposure to construction noise. Previous studies have proposed various ways in which audio sensing and machine learning techniques can be used to track equipment's movement on the construction site but not on the audibility of safety signals. This study develops a novel framework to help automate safety surveillance in the construction site. This is done by detecting the audio sound at a different signal-to-noise ratio of -10db, -5db, 0db, 5db, and 10db to notify the worker of imminent dangers of mobile equipment. The scope of this study is focused on developing a signal processing model to help improve the audible sense of mobile equipment for workers. This study includes three-phase: (a) collect audio data of construction equipment, (b) develop a novel audio-based machine learning model for automated detection of collision hazards to be integrated into intelligent hearing protection devices, and (c) conduct field experiments to investigate the system' efficiency and latency. The outcomes showed that the proposed model detects equipment correctly and can timely notify the workers of hazardous situations.

  • PDF

Working in a Risky Environment: Coping and Risk Handling Strategies Among Small-scale Miners in Ghana

  • Wireko-Gyebi, Rejoice Selorm;Arhin, Albert Abraham;Braimah, Imoro;King, Rudith Sylvana;Lykke, Anne Mette
    • Safety and Health at Work
    • /
    • v.13 no.2
    • /
    • pp.163-169
    • /
    • 2022
  • Background: It is estimated that about 13 million artisanal and small-scale miners carry out their activities under harsh, precarious, unfriendly, and risky conditions. Yet, our understanding of the extent to which these workers use personal protective equipment (PPE) and navigate through the various risks and hazards they face is still limited. This article has two main objectives. First, it explores the extent of usage of PPE among artisanal and small-scale miners for the prevention of hazards and risks. Second, it examines the coping strategies used by these miners as a response to experiences of occupational injuries and risks Methods: A cross-sectional survey of small-scale miners was conducted in six communities across three districts in Ghana, West Africa. The mixed methods approach was adopted. A total of 148 small-scale miners participated in the study. Six focus group discussions (FGDs) were held across the six communities. The data were analysed using descriptive statistics. Chi-square tests were used to analyse the relationship between some socio-demographic characteristics (sex, age, and educational background) and the usage of PPE. Open-ended questions and responses from FGDs were analysed based on the content and verbatim quotations from miners. Results: Findings suggest that 78% of the miners interviewed do not use the appropriate PPE citing reasons such as cost, and their personal discomfort associated with use of PPE. There was no significant relationship between socio-demographic characteristics (i.e., sex, age, education and major mining activity) and the usage of PPE. The study further revealed four main coping strategies used by miners to handle the risks. These are rest, taking unprescribed medication and hard drugs, registration with health insurance scheme and savings and investments. Conclusion: This study shows that very few artisanal miners use PPE despite the significant hazards and risks to which they are exposed. The study recommends to the government to put in place measures to ensure that miners adhere to health and safety regulations before undertaking mining activities. This means that health and safety plans and use of PPE should be linked to the license acquisition process for miners.

Numerical simulation of turbulent flow around a building complex for development of risk assessment technique for windstorm hazards (강풍피해 위험성 평가를 위한 건물군 주위 유동해석)

  • Choi, Choon-Bum;Yang, Kyung-Soo;Lee, Sung-Su;Ham, Hee-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2737-2742
    • /
    • 2007
  • Strong wind flow around a building complex was numerically studied by LES. The original motivation of this work stemmed from the efforts to develop a risk assessment technique for windstorm hazards. Lagrangian-averaged scale-invariant dynamic subgrid-scale model was used for turbulence modeling, and a log-law-based wall model was employed on all the solid surfaces including the ground and the surface of buildings to replace the no-slip condition. The shape of buildings was implemented on the Cartesian grid system by an immersed boundary method. Key flow quantities for the risk assessment such as mean and RMS values of pressure on the surface of the selected buildings are presented. In addition, characteristics of the velocity field at some selected locations vital to safety of human beings is also reported.

  • PDF

A study on hazard analysis techniques for railway signalling system (철도신호시스템 분석을 위한 위험원 분석 techniques 연구)

  • Li, Chang-Long;Jung, Ho-Hung;Oh, Sea-Hwa;Yun, Hak-Sun;Lee, Key-Seo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.232-238
    • /
    • 2011
  • Hazard analysis provides the basic foundation for system safety. Hazard analysis is performed to identify hazards, hazard effects, and hazard causal factors. Hazard analysis is used to determine system risk, to determine the significance of hazards, and to establish design measures that will eliminate or mitigate the identified hazards. Hazard analysis is used to systematically examine systems, subsystems, facilities, components, software, personnel, and their interrelationships, with consideration given to logistics, training, maintenance, test, modification, and operational environments. This paper present hazard analysis techniques which is commonly used in railway signalling, comparised their benefits and limitations.

  • PDF

Preliminary Hazard Analysis for Near Surface Transit Signal System (저심도 도시철도 신호시스템의 사전 위험원 분석 연구)

  • Cho, Bong-Kwan;Park, Ki-Jun;Lim, Sok-Woo;Cha, Gi-Ho;Oh, Kwi-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.97-103
    • /
    • 2015
  • To achieve the safety and reliability, RAMS activity for a railway signal system of Near Surface Transit is studied. In this paper, preliminary hazard analysis in RAMS activities is studied for the railway signal system of Near Surface Transit. Preliminary hazard analysis is done through automatic train protection, automatic train operation and automatic train supervision. The hazards are defined, then causes and consequence for each hazard are defined. The total 75 preliminary hazards are classified. For high severity hazards are changed to acceptable level by upgrading of system requirement specification.

Applying QDRD for Safety Products Design (제품안전설계를 위한 QDRD의 적용)

  • Jung, Won;Kim, Jun-Hong;Yoo, Wang-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.164-173
    • /
    • 2002
  • The first product liability laws went into effect in Korea in July 2002. A person who suffers personal injury or damage to property due to defects in a product may sue both the manufacturer and the seller of the product under the principles of Korea tort law. This paper presents an integrated methodology which is called the QDRD(Quality deployment and reliability deployment) for hazards analysis in new product designs. QDRD applies QFD, FMEA and FTA to identify the hazards component, hazardous situations and hazardous events which could lead to an accident. An example is provided to demonstrate hazards analysis on a product using the QDRD method.

Integrated Model for Assessment of Risks in Rail Tracks under Various Operating Conditions

  • G. Chattopadhyay;V. Reddy;Larsson, P-O
    • International Journal of Reliability and Applications
    • /
    • v.4 no.4
    • /
    • pp.183-190
    • /
    • 2003
  • Rail breaks and derailments can cause a huge loss to rail players due to loss of service, revenue, property or even life. Maintenance has huge impact on reliability and safety of railroads. It is important to identify factors behind rail degradation and their risks associated with rail breaks and derailments. Development of mathematical models is essential for prediction and prevention of risks due to rail and wheel set damages, rail breaks and derailments. This paper addresses identification of hazard modes, estimation of probability of those hazards under operating, curve and environmental condition, probability of detection of potential hazards before happening and severity of those hazards for informed strategic decisions. Emphasis is put on optimal maintenance and operational decisions. Real life data is used for illustration.

  • PDF

INFLUENCE FACTOR-BASED RISK ASSESSMENT METHODOLOGY FOR CONSTRUCITON

  • Hyunsoo Kim;Hyunsoo Lee;Moonseo Park;Kwang-pyo Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1231-1236
    • /
    • 2009
  • Many work-related risk factors can cause construction site hazards. Therefore, safety management begins with measuring the magnitude of risk involved in a project. This study proposes a methodology for risk assessment of major trades at a particular construction site. To assess risk, this methodology integrates hazard severity and frequency, and their magnitude is calculated based on actual work-site hazards. This methodology also considers the influence factors that affect the frequency of work-related hazards. To select the appropriate influence factors, a two step approach is deployed. First, the predominant factors are identified through a literature review. Second, a selective process filters out the influence factors that are difficult to analyze quantitatively, and these extracted factors are weighted using expert surveys. Finally, the factors are combined and a quantitative risk assessment methodology is proposed.

  • PDF

Advance Crane Lifting Safety through Real-time Crane Motion Monitoring and Visualization

  • Fang, Yihai;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.321-323
    • /
    • 2015
  • Monitoring crane motion in real time is the first step to identifying and mitigating crane-related hazards on construction sites. However, no accurate and reliable crane motion capturing technique is available to serve this purpose. The objective of this research is to explore a method for real-time crane motion capturing and investigate an approach for assisting hazard detection. To achieve this goal, this research employed various techniques including: 1) a sensor-based method that accurately, reliably, and comprehensively captures crane motions in real-time; 2) computationally efficient algorithms for fusing and processing sensing data (e.g., distance, angle, acceleration) from different types of sensors; 3) an approach that integrates crane motion data with known as-is environment data to detect hazards associated with lifting tasks; and 4) a strategy that effectively presents crane operator with crane motion information and warn them with potential hazards. A prototype system was developed and tested on a real crane in a field environment. The results show that the system is able to continuously and accurately monitor crane motion in real-time.

  • PDF

A Study on the Analysis of Accidents for Reinforced concrete Method and Pre-cast concrete Method (재래식 철근콘크리트 공법과 조립식 콘크리트 공법에서의 사고 분석에 관한 조사 연구)

  • Park, Jong-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.81-86
    • /
    • 1995
  • In order to apply to analysis methods of mechanism and cross tabulation methods for the influence factors by the accident types to the object of accidents which occurred in R.C and P.C methods among the accidents in construction work sites, the latent hazards in P.C method are evaluated from the data of accidents in H Company from Jan. 1, 1993 to Dec. 31, 1993. The relationship between accident types and unsafe acts, unsafe conditions are recognized and the hazards of R.C method and P.C method are compared from the data acquired by the analysis of causes for a kind of occurrence mechanism. In conclusions, the items such as causes of accidents, accidents types, occurrence time, and the characteristics, are concentrated on one side in the P.C method, which is quite different from R.C method. Therefore the control method for the accident causes is easily established with a lot of effective advantages. The frequency and severity of accidents in P.C method are so low in comparison with R.C method.

  • PDF