• Title/Summary/Keyword: sMAPE

Search Result 76, Processing Time 0.023 seconds

Estimation Method of Predicted Time Series Data Based on Absolute Maximum Value (최대 절대값 기반 시계열 데이터 예측 모델 평가 기법)

  • Shin, Ki-Hoon;Kim, Chul;Nam, Sang-Hun;Park, Sung-Jae;Yoo, Sung-Soo
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • In this paper, we introduce evaluation method of time series prediction model with new approach of Mean Absolute Percentage Error(hereafter MAPE) and Symmetric Mean Absolute Percentage Error(hereafter sMAPE). There are some problems using MAPE and sMAPE. First MAPE can't evaluate Zero observation of dataset. Moreover, when the observed value is very close to zero it evaluate heavier than other methods. Finally it evaluate different measure even same error between observations and predicted values. And sMAPE does different evaluations are made depending on whether the same error value is over-predicted or under-predicted. And it has different measurement according to the each sign, even if error is the same distance. These problems were solved by Maximum Mean Absolute Percentage Error(hereafter mMAPE). we used the absolute maximum of observed value as denominator instead of the observed value in MAPE, when the value is less than 1, removed denominator then solved the problem that the zero value is not defined. and were able to prevent heavier measurement problem. Also, if the absolute maximum of observed value is greater than 1, the evaluation values of mMAPE were compared with those of the other evaluations. With Beijing PM2.5 temperature data and our simulation data, we compared the evaluation values of mMAPE with other evaluations. And we proved that mMAPE can solve the problems that we mentioned.

Study of Stochastic Techniques for Runoff Forecasting Accuracy in Gongju basin (추계학적 기법을 통한 공주지점 유출예측 연구)

  • Ahn, Jung Min;Hur, Young Teck;Hwang, Man Ha;Cheon, Geun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.21-27
    • /
    • 2011
  • When execute runoff forecasting, can not remove perfectly uncertainty of forecasting results. But, reduce uncertainty by various techniques analysis. This study applied various forecasting techniques for runoff prediction's accuracy elevation in Gongju basin. statics techniques is ESP, Period Average & Moving average, Exponential Smoothing, Winters, Auto regressive moving average process. Authoritativeness estimation with results of runoff forecasting by each techniques used MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), RRMSE (Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC (Theil Inequality Coefficient). Result that use MAE, RMSE, RRMSE, MAPE, TIC and confirm improvement effect of runoff forecasting, ESP techniques than the others displayed the best result.

Establishing a Demand Forecast Model for Container Inventory in Liner Shipping Companies (정기선사의 컨테이너 재고 수요예측모델 구축에 대한 연구)

  • Jeon, Jun-woo;Jung, Kil-su;Gong, Jeong-min;Yeo, Gi-tae
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • This study attempts to establish a precise forecast model for the container inventory demand of shipping companies through forecasts based on equipment type/size, ports, and weekly system dynamics. The forecast subjects were Shanghai and Yantian Ports. Only dry containers (20, 40) and high cubes (40) were used as the subject container inventory in this study due to their large demand and valid data computation. The simulation period was from 2011 to 2017 and weekly data were used, applying the actual data frequency among shipping companies. The results of the model accuracy test obtained through an application of Mean Absolute Percentage Error (MAPE) verified that the forecast model for dry 40' demand, dry 40' high cube demand, dry 20' supply, dry 40' supply, and dry 40' high cube supply in Shanghai Port provided an accurate prediction, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Shanghai Port was otherwise verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model for dry 40' high cube demand and dry 20' supply in Yantian Port was accurate, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Yantian Port was generally verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model in this study also had relatively high accuracy when compared with the actueal data managed in shipping companies.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

A Study on Demand Forecasting Change of Korea's Imported Wine Market after COVID-19 Pandemic (코로나 팬데믹 이후 국내 수입와인 시장의 수요예측 변화 연구)

  • Jihyung Kim
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.189-200
    • /
    • 2023
  • At the beginning of the COVID-19 pandemic, Korea's wine market had shrunk as other countries. However, right after the pandemic, Korea's imported wine consumption had been increased 69.6%. Because of the ban on overseas travel, wine was consumed in the domestic market. And consumption of high-end wines were increased significantly due to revenge spending and home drinking. However, from 2022 Korea's wine market has begun to shrink sharply again. Therefore this study forecasts the size of imported wine market by 2032 to provide useful information to wine related business entities. KITA(Korea International Trade Association)'s 95 time-series data per quarter from Q1 of 2001 to Q3 of 2023 was utilized in this research. The accuracy of model was tested based on value of MAPE. And ARIMA model was chosen to forecast the size of market value and Winter's multiplicative model was used for the size of market volume. The result of ARIMA model for the value (MAPE=10.56%) shows that the size of market value in 2032 will be increased up to USD $1,023,619, CAGR=6.22% which is 101% bigger than its size of 2023. On the other hand, the volume of imported wine market (MAPE=10.56%) will be increased up to 64,691,329 tons, CAGR=-0.61% which is only 15.12% bigger than its size of 2023. The result implies that the value of Korea's wine market will continue to grow despite the recent decline. And the high-end wine market will account for most of the increase.

A Study of Air Freight Forecasting Using the ARIMA Model (ARIMA 모델을 이용한 항공운임예측에 관한 연구)

  • Suh, Sang-Sok;Park, Jong-Woo;Song, Gwangsuk;Cho, Seung-Gyun
    • Journal of Distribution Science
    • /
    • v.12 no.2
    • /
    • pp.59-71
    • /
    • 2014
  • Purpose - In recent years, many firms have attempted various approaches to cope with the continual increase of aviation transportation. The previous research into freight charge forecasting models has focused on regression analyses using a few influence factors to calculate the future price. However, these approaches have limitations that make them difficult to apply into practice: They cannot respond promptly to small price changes and their predictive power is relatively low. Therefore, the current study proposes a freight charge-forecasting model using time series data instead a regression approach. The main purposes of this study can thus be summarized as follows. First, a proper model for freight charge using the autoregressive integrated moving average (ARIMA) model, which is mainly used for time series forecast, is presented. Second, a modified ARIMA model for freight charge prediction and the standard process of determining freight charge based on the model is presented. Third, a straightforward freight charge prediction model for practitioners to apply and utilize is presented. Research design, data, and methodology - To develop a new freight charge model, this study proposes the ARIMAC(p,q) model, which applies time difference constantly to address the correlation coefficient (autocorrelation function and partial autocorrelation function) problem as it appears in the ARIMA(p,q) model and materialize an error-adjusted ARIMAC(p,q). Cargo Account Settlement Systems (CASS) data from the International Air Transport Association (IATA) are used to predict the air freight charge. In the modeling, freight charge data for 72 months (from January 2006 to December 2011) are used for the training set, and a prediction interval of 23 months (from January 2012 to November 2013) is used for the validation set. The freight charge from November 2012 to November 2013 is predicted for three routes - Los Angeles, Miami, and Vienna - and the accuracy of the prediction interval is analyzed using mean absolute percentage error (MAPE). Results - The result of the proposed model shows better accuracy of prediction because the MAPE of the error-adjusted ARIMAC model is 10% and the MAPE of ARIMAC is 11.2% for the L.A. route. For the Miami route, the proposed model also shows slightly better accuracy in that the MAPE of the error-adjusted ARIMAC model is 3.5%, while that of ARIMAC is 3.7%. However, for the Vienna route, the accuracy of ARIMAC is better because the MAPE of ARIMAC is 14.5% and the MAPE of the error-adjusted ARIMAC model is 15.7%. Conclusions - The accuracy of the error-adjusted ARIMAC model appears better when a route's freight charge variance is large, and the accuracy of ARIMA is better when the freight charge variance is small or has a trend of ascent or descent. From the results, it can be concluded that the ARIMAC model, which uses moving averages, has less predictive power for small price changes, while the error-adjusted ARIMAC model, which uses error correction, has the advantage of being able to respond to price changes quickly.

Performance Analysis of an Anisotropic Magnetoresistive Sensor-Based Vehicle Detector (Anisotropic Magnetoresistive 센서를 이용한 차량 검지기의 성능분석)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.598-604
    • /
    • 2009
  • This paper proposes a vehicle detector with an anisotropic magnetoresistive (AMR) sensor and addresses experimental results to show the detector's performance. The detector consists of an AMR sensor and mechanical and electronic apparatuses. The AMR sensor, composed of four magnetoresistors, senses disturbance of the earth's magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. This paper verifies performance of the detector on the basis of experimental results obtained from the field tests carried under the two traffic conditions on local highways in Korea. First, I show the vehicle counting performance on a low speed congested highway by comparing the vehicle counts measured by the detector with the exact counts. Second, both vehicle counts and average speeds calculated from the measured point-occupancy on another continuously free running highway are compared with the reference values obtained from a loop detector which has two independent loop coils, where I have used several performance indices including mean absolute percentage error (MAPE) to show the performance consistency between the two types of detectors.

Comparison of forecasting models of disease occurrence due to the weather in elderly patients (기상에 따른 고령환자의 질병 발생빈도 예측모형 비교)

  • Lee, Seonjae;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.145-155
    • /
    • 2016
  • In this paper, we compare forecasting models for disease occurrences in elderly patients due to the weather. For the analysis, the medical data of aged patients released from Health Insurance Review and the weather data of the Korea Meteorological Administration are weekly and regionally merged. The ARMAX model, the VARMAX model and the TSCS regression model are considered to analyze the number of weekly occurrences of some diseases attributable to climate conditions. These models are compared with MSE, MAPE, and MAE criteria.

Forecasting of Container Cargo Volumes of China using System Dynamics (System dynamics를 이용한 중국 컨테이너 물동량 예측에 관한 연구)

  • Kim, Hyung-Ho;Jeon, Jun-woo;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.157-163
    • /
    • 2017
  • Forecasting container cargo volumes is very important factor for port related organizations in inversting in the recent port management. Especially forcasting of domestic and foreign container volume is necessary because adjacent nations are competing each other to handle more container cargoes. Exact forecasting is essential elements for national port policy, however there is still some difficulty in developing the predictive model. In this respect, the purpose of this study is to develop and suggest the forecasting model of container cargo volumes of China using System Dynamics (SD). The monthly data collected from Clarkson's Shipping Intelligence Network from year 2004 to 2015 during 12 years are used in the model. The accuracy of the model was tested by comparisons between actual container cargo volumes and forecasted corgo volumes suggested by the research model. The MAPE values are calcualted as 6.21% for imported cargo volumes and 7.68% for exported cargo volumes respectively. Less than 10% of MAPE value means that the suggested model is very accurate.

Influence of Hwangto on the Mechanical Properties of Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-78
    • /
    • 2007
  • The mechanical properties of wood flour, Hwangto (325 and 1,400 mesh per 25,4 mm) and coupling agent-reinforced HDPE composites were investigated in this study. Hwangto and maleated polyethylene (MAPE) were used as an inorganic filler and a coupling agent, respectively. The addition of Hwangto and MAPE to virgin HDPE also increased the Young's modulus in the smaller degree. The addition of wood flour and Hwangto to virgin HDPE increased the tensile strength, due to the high uniform dispersion of HDPE by high surface area of Hwangto in HDPE and wood flour. MAPE also significantly increased the tensile strength. When wood flour was added, there was no notable difference on the tensile properties, in terms of Hwangto particle size. Hwangto also improved the flexural modulus and strength of reinforced HDPE composites. With different particle sizes of Hwangto, there was no considerable difference in flexural modulus and strength of reinforced HDPE composites. The addition of Hwangto showed slightly lower impact strength than that of wood flour. However, the particle size of Hwangto showed no significant effect on the impact strength of reinforced composites. In conclusion, reinforced HDPE composites with organic and inorganic fillers provide highly improved mechanical properties over virgin HDPE.