DOI QR코드

DOI QR Code

Forecasting of Container Cargo Volumes of China using System Dynamics

System dynamics를 이용한 중국 컨테이너 물동량 예측에 관한 연구

  • Kim, Hyung-Ho (Dept. of Information & Logistics, Sehan University) ;
  • Jeon, Jun-woo (Graduate school of Logistics, Incheon University) ;
  • Yeo, Gi-Tae (Graduate school of Logistics, Incheon University)
  • 김형호 (세한대학교 정보물류학과) ;
  • 전준우 (인천대학교 동북아 물류대학원) ;
  • 여기태 (인천대학교 동북아 물류대학원)
  • Received : 2017.02.02
  • Accepted : 2017.03.20
  • Published : 2017.03.28

Abstract

Forecasting container cargo volumes is very important factor for port related organizations in inversting in the recent port management. Especially forcasting of domestic and foreign container volume is necessary because adjacent nations are competing each other to handle more container cargoes. Exact forecasting is essential elements for national port policy, however there is still some difficulty in developing the predictive model. In this respect, the purpose of this study is to develop and suggest the forecasting model of container cargo volumes of China using System Dynamics (SD). The monthly data collected from Clarkson's Shipping Intelligence Network from year 2004 to 2015 during 12 years are used in the model. The accuracy of the model was tested by comparisons between actual container cargo volumes and forecasted corgo volumes suggested by the research model. The MAPE values are calcualted as 6.21% for imported cargo volumes and 7.68% for exported cargo volumes respectively. Less than 10% of MAPE value means that the suggested model is very accurate.

항만 물동량 예측은 항만관리 기관의 투자계획에 매우 중요한 요소이다. 더불어 최근 항만은 물동량 유치를 위한 치열한 경쟁을 이어가고 있기 때문에 항만 정책수립에 있어 국내외 주요국의 물동량 예측은 중요한 의미를 갖는다. 항만 물동량 예측이 항만의 개발정책에 매우 중요하지만 최적의 물동량 예측 모델 개발에는 아직 어려움을 겪고 있다. 이러한 측면에서 본 연구는 중국 컨테이너 물동량 예측모델 제시를 연구의 목적으로 하였다. 중국 컨테이너 물동량 예측은 Clarkson's Shipping Intelligence Network를 통해 수집한 2004년 1월부터 2015년 12월까지 12년간의 월간 데이터를 System Dynamics를 사용하여 2004년부터 2020년까지 변화를 시뮬레이션 하였다. 실제 중국 컨테이너 물동량 데이터와 Stock-flow 다이어그램을 통해 도출된 예측값을 비교하여 모델의 정확도를 검증했다. 검증결과 수 출입 컨테이너 예측모델은 MAPE값이 각각 6.21 %, 7.68 %로 나타나 정확한 예측모델로 확인되었다.

Keywords

References

  1. Abd-Elaal, A. K., Hefny, H. A., and Abd-Elwahab, A. H, "Forecasting of egypt wheat imports using multivariate fuzzy time series model based on fuzzy clustering", IAENG International Journal of Computer Science, Vol. 40 No. 4, pp. 230-237, 2013.
  2. C. B. Kim, "Forecasting the Seaborne Trade Volume using Intervention Multiplicative Seasonal ARIMA and Artificial Neural Network Mode", Journal of Korea Port Economic Association, Vol. 31, No. 1, pp. 69-84, 2015.
  3. Grant, W. E., Pedersen, E. K., and Marín, S. L. (1997). Ecology and natural resource management: systems analysis and simulation. John Wiley & Sons.
  4. G. S. An, Y. K. Koh, and J. H. Noh, "Forecasting Cargo Traffic of Zarubino Port with O/Ds of Jilin Sheng in China", International Commerce and Information Review, Vol. 18, No. 1, pp. 81-105, 2016.
  5. Guo, Z., Song, X., and Ye, J. (2005). "A Verhulst model on time series error corrected for port throughput forecasting". Journal of the Eastern Asia society for Transportation studies, Vol. 6, pp. 881-89, 2005.
  6. Lewis, C. D, "Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting", Butterworth-Heinemann, 1982.
  7. Li, K., Sun, C., and Yang, J, " The Combination Forecasting of Nanchang Port's Cargo Throughput. In Management and Service Science", MASS'09. International Conference on, pp. 1-4, 2009.
  8. Liu, S., Na, L., Yang, X., Jie, J., Han, S., and Zhe, J, "Research on Electricity Demand Forecasting Method based on System Dynamics with Electricity Market Reform. DEStech Transactions on Environment", Energy and Earth Science, 2016.
  9. Seabrooke, W., Hui, E. C., Lam, W. H., & Wong, G. K, "Forecasting cargo growth and regional role of the port of Hong Kong", Cities, Vol. 20 No. 1, pp. 51-64, 2003. https://doi.org/10.1016/S0264-2751(02)00097-5
  10. Shibasaki, R., Watanabe, T, "Future Forecast of Trade Amount and International Cargo Flow in the APEC Region: An Application of Trade-Logistics Forecasting Model". Asian Transport Studies, Vol. 2 No. 2, pp. 194-208, 2012.
  11. Sterman, J. D, siness dynamics: systems thinking and modeling for a complex world (No. HD30. 2 S7835 2000), 2000.
  12. Sterman, J. D, "System dynamics modeling: tools for learning in a complex world.", California management review, Vol. 43, No. 4, pp. 8-25. 2001. https://doi.org/10.2307/41166098
  13. Xie, G., Wang, S., Zhao, Y., and Lai, K. K, "Hybrid approaches based on LSSVR model for container throughput forecasting: a comparative study". Applied Soft Computing, Vol. 13 No. 5, pp. 2232-2241, 2013. https://doi.org/10.1016/j.asoc.2013.02.002
  14. Jin-Ho Jeon, Min-soo Kim, "Determination of Pattern Models using a Convergence of Time-Series Data Conversion Technique for the Prediction of Financial Markets", Journal of Digital Convergence, Vol. 13 No. 5, pp. 237-244, 2015. https://doi.org/10.14400/JDC.2015.13.5.237
  15. Inkyu Kim, "Prediction for Nonlinear Time Series Data using Neural Network", Journal of Digital Convergence, Vol. 10 No. 9, pp. 357-362, 2012. https://doi.org/10.14400/JDPM.2012.10.9.357
  16. Min-Gu Song, Sun-Bae Kim, "A Study of improving reliability on prediction model by analyzing method Big data", The Journal of Digital Policy & Management, Vol. 11 No. 6, pp. 103-112, 2013.
  17. Jun-Yeon Lee, "Forecasting the Time-Series Data Converged on Time PLOT and Moving Average", Journal of the Korea Convergence Society, Vol. 6 No. 4, pp. 161-167, 2015. https://doi.org/10.15207/JKCS.2015.6.4.161
  18. https://www.icpa.or.kr
  19. https://sin.clarksons.net/