• Title/Summary/Keyword: rupture point

Search Result 96, Processing Time 0.037 seconds

Force-Deformation Characteristics of the Fruit Flesh (과실(果實)의 힘-변형(變形) 특성(特性))

  • Kim, M.S.;Park, J.M.;Choi, D.S.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.2
    • /
    • pp.156-170
    • /
    • 1992
  • The force-deformation relationship gives the basic physical properties of the fruits such as the bioyield point, the rupture point, and the deformations at the bioyield point and the rupture point. These informations are very important to study the stress-strain relationships of the fruits. This study was conducted to analyze those physical properties according to the sampling position of the fruits, and to determine the bioyield point, the rupture point, and the deformations at the bioyield point and the rupture point of the fruits for two different storage conditions(low temperature and normal temperature) and the storage period, and to investigate the effect of loading rate on those physical properties, the hysteresis on the loading-unloading condition and the degree of elasticity of the fruits. The results of the study were as follows : 1. The physical properties(BS, US, BD, and RD) of the test specimen selected from the different sampling positions were quite different. The values of the physical properties were shown smallest ones at the cheek of the fruits, and the statistical test results of the physical properties between the cheek from the other two positions of the fruits showed that there were significant difference at the 1 % level between them. 2. The effect of loading rate on the physical properties of the fruits was relatively large, all the considered physical propertis of the fruits increased with the loading rate, but the hysteresis loss decreased with it. 3. The physical properties of the fruits according to the storage conditions and period showed different, and the bioyield deformation and the rupture deformation of the fruits increased with the storage period, but the bioyield strength and the ultimate strength of the fruits decreased with it. The effect of the storage conditions on the those physical properties showed that the normal temperature storage condition was a little higher than the low temperature storage condition. 4. As a whole, it was shown that the bioyield strength and the ultimate strength of the pear decreased a little faster than those of the apple, and the bioyield deformation and rupture deformation of the pear increased a little faster than those of apple at the two storage conditions.

  • PDF

Bioyield Strength and Ultimate Strength of Rough Rice (벼의 생물체(生物體) 강복강도(降伏强度) 및 극한강도(極限强度))

  • Kim, M.S.;Kim, S.R.;Park, J.M.;Myung, B.S.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.99-109
    • /
    • 1990
  • Rough rice is subjected to a series of static and dynamic forces during mechanical harvesting, handling and processing operations. The mechanical properties such as bioyield point, compressive strength, and deformations at the bioyield point and rupture point are important engineering data needed to develop processing machines and to determine reasonable operating conditions for these machines. The objectives of this study were to determine the mechanical properties of the rough rice kernel at loading rate of 0.664 mm/min and 1.673 mm/min and at various moisture contents, and to examine the effect of the moisture content and the loading rate on these mechanical properties. The follwing results were obtained from the study. 1. Bioyield point, rupture point, bioyield strength and ultimate strength of the rough rice kernel generally decreased in magnitude with an increase in moisture content. A little larger values of these mechanical properties were obtained at the higher loading rate. The rough rice variety and the loading rate affected significantly these mechanical properties at low moisture content, but not at the higher moisture levels. 2. Bioyield point of the sample grains varied from 20 to 80 N, and rupture point varied from 45 to 130N. Bioyield point for Japonica-type rough rice was a little higher than that for Indica-type rough rice, but there were little differnces in rupture point between two types of rough rice. 3. Bioyield strength and ultimate strength of the Japonica-type rough rice varied from 10 MPa. to 39 MPa., and from 13 MPa. to 45 MPa. respectively. Those of the Indica-type rough rice varied from 12 MPa. to 42 MPa., and from 15 MPa. to 53 MPa. respectively. 4. Deformations at bioyield point and rupture point ranged from 0.18 mm/min to 0.26 mm, and from 0.28 mm to 0.53 mm respectively. These deformations decreased with an increase in moisture content up to moisture content of approximately 17% (w.b.) and increased again thereafter. 5. Regression equations were developed to predict these mechanical properties for the rough rice kernel as a function of moisture content.

  • PDF

Compressive Behavior of Some Vegetables (몇 가지 채소류의 압축거동)

  • 정헌상;박남규;도대홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.466-471
    • /
    • 1996
  • In order to investigate the compression characteristics on the some vegetables-cucumber, garlic, ginger, potato, and radish-compression force, distance, and time were measured with a Struct-O-Graph and correlations between them were investigated. Force-distance and distance-time curves were showed simply and reflection points were showed rarely. The time to rupture point was long of 11.7sec at the compression speed of 60mm/min and of 6.16sec at the compression speed of 120mm/min in potato, and short of 9.65, 4.55sec at the different compression speed in garlic, respectively. The rupture force was large of 16.64~20.00N at the different compression speed in potato and radish, and the sample at rupture point was showed crushing behavior under probe. These phenomena were suggested because compression strength of sample was different. In the result of regression analysis for force-time and distance-time to the rupture point, the correlation coefficients were above 0.96, and difference of among samples was small. The slopes of force-time were large of 1.772~3.385 in cucumber and small of 1.743~3.338 in potato, and the slopes of distance-time were obtained with reverse results.

  • PDF

Punch Properties of Some Vegetables (몇가지 채소류의 펀치특성)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.273-278
    • /
    • 1997
  • In order to investigate the punch properties of some vegetables-cucumber, radish, garlic, ginger and potato-force, distance, and time were measured with a texturometer, and the correlations between compositions and cell characteristics of samples were characterized. Many reflection and rupture points on the force-distance and distance-time curve were observed, and these points appeared when the cells of sample were resisted and yielded against the applied force. They were big and clear at the slow crosshead speed. The regression analysis for force-time and distance-time to the rupture point showed $R^{2}>0.95$. The rupture time and rupure force were 5.63 sec, 4.88 N in ginger and 4.15 sec, 2.00 N in cucumber. The rupture forces become large values at the fast crosshead speed. As cell sizes were increased, the moisture content and rupture distance were increased, while the viscosity of juice, density, regularity of cell, and slope of force-time were decreased. Rupture force, time and distance were decreased at the large specific gravity of samples. The slopes of distance-time curve were inversely proportional to slope of force-time curve.

  • PDF

Clinical Analysis of Intraoperative Rupture of Cerebral Aneurysms (수술 중 뇌동맥류 파열에 대한 임상 분석)

  • Baek, Won-Cheol;Koh, Hyeon-Song;Kim, Youn
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup1
    • /
    • pp.73-78
    • /
    • 2001
  • Objective : Intraoperative rupture of an intracranial aneurysm can interrupt a microsurgical procedure and jeopardize the patient's chance to favorable outcome. The purpose of this study was to analyse and evaluate intraoperative aneurysmal rupture and render ideal prevention and management to intraoperative rupture. Patients and Methods : The authors retrospectively analysed the results of 609 patients who underwent cerebral aneurysm surgery from January 1991 to December 2000. Results : 1) Intraoperative aneurysmal rupture occurred in 73 of 609 consecutive aneurysm surgery, so the incidence was about 12.0% and it was relatively lower than other reports. 2) Aneurysms arising from anterior communicating artery appeared more prone to intraoperative rupture. 3) The size of aneurysm and timing of operation didn't influence intraoperative aneurysmal rupture and temporary clipping didn't reduce the incidence of intraoperative aneurysmal rupture. 4) Intraoperative aneurysmal rupture occured during three specific periods : (1) dissection stage in 61%, (2) clip application stage in 29 %, (3) predissection stage in 10%. 5) In the patients with intraoperative aneurysmal rupture, surgical outcome was relatively good and there was no significant difference in outcome compared with unruptured group. Conclusion : Our suggestion for prevention methods of intraoperative aneurysmal rupture are as follows : 1) minimal brain retraction, 2) sharp and careful aneurysmal neck dissection, 3) gentle clipping with proper clip selection etc. Management methods after intraoperative aneurysmal rupture are as follows : 1) strong aspiration of bleeding point, 2) rapid application of temporary and/or tentative clip, 3) following rapid dissection of neck and proper clip application, 4) use of encircling clip etc.

  • PDF

High Temperature Design Criteria of Cordierite Ceramic Substrate in Four-point Banding (4점 굽힘시험에서 코디어라이트 세라믹 담체의 고온설계기준)

  • Baek, Seok-Heum;Park, Jea-Sung;Choi, Hyun-Jin;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.173-174
    • /
    • 2008
  • The four-point bending test is a widely used method to determine material parameters. The aim of the present study was to evaluate the flexural strength (or modulus of rupture) and the Weibull modulus of cordierite ceramic substrate by means of four-point bending tests. The strength data from experiments followed Weibull statistics. These data indicate that the fatigue effects are more severe when the substrate temperature in the peripheral region is near $200^{\circ}$. At temperatures well above $200^{\circ}C$ the available design strength can be as high as 65% as substrate's initial strength.

  • PDF

Fault rupture directivity of Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 단층파열방향성)

  • Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Fault rupture directivity of the Odaesan earthquake, which was inferred to be the main cause of the high PGAvalue (> 0.1 g) unusually observed at the near-source region, was analyzed by using the data from the nearby (R < 100 km) dense seismic stations. The Boatwright's method (2007) was adopted for this purpose in which the azimuth and takeoff angle of the unilateral rupture directivity function could be estimated based on the relative peak ground-motions of seismic stations resulting from the nature of the rupture directivity. In this study, the approximate values of the relative peak ground-motions was derived from the difference between the log residuals of the point-source spectral model (Boore, 2003) for the main and secondary events based on the Random Vibration Theory. In this derivation, the spectral difference for a frequency range between the source corner frequencies of main and secondary events was considered to reflect only the effect of the fault directivity. The inversion result of the model parameters for the fault directivity function showed that the fault-plane of NWW-SEE direction dipping steeply to the North with high rupture velocity near upward in SE direction is responsible for the observed high level of ground-motion at the near-source region.

Pterional or Subfrontal Access for Proximal Vascular Control in Anterior Interhemispheric Approach for Ruptured Pericallosal Artery Aneurysms at Risk of Premature Rupture

  • Park, Jaechan
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.250-256
    • /
    • 2017
  • Objective : Cases of a ruptured pericallosal artery aneurysm with a high risk of intraoperative premature rupture and technical difficulties for proximal vascular control require a technique for the early and safe establishment of proximal vascular control. Methods : A combined pterional or subfrontal approach exposes the bilateral A1 segments or the origin of the ipsilateral A2 segment of the anterior cerebral artery (ACA) for proximal vascular control. Proximal control far from the ruptured aneurysm facilitates tentative clipping of the rupture point of the aneurysm without a catastrophic premature rupture. The proximal control is then switched to the pericallosal artery just proximal to the aneurysm and its intermittent clipping facilitates complete aneurysm dissection and neck clipping. Results : Three such cases are reported : a ruptured pericallosal artery aneurysm with a contained leak of the contrast from the proximal side of the aneurysm, a low-lying ruptured pericallosal artery aneurysm with irregularities on its proximal wall, and a multilobulated ruptured pericallosal artery aneurysm with the parasagittal bridging veins hindering surgical access to the proximal parent artery. In each case, the proposed combined pterional-interhemispheric or subfrontal-interhemispheric approach was successfully performed to establish proximal vascular control far from the ruptured aneurysm and facilitated aneurysm clipping via the interhemispheric approach. Conclusion : When using an anterior interhemispheric approach for a ruptured pericallosal artery aneurysm with a high risk of premature rupture, a pterional or subfrontal approach can be combined to establish early proximal vascular control at the bilateral A1 segments or the origin of the A2 segment.

Measurements of Mechanical Behavior of Rough Rice under Impact Loading (벼의 충격(衝擊) 특성(特性)에 관한 연구(硏究))

  • Cha, J.Y.;Koh, H.K.;Noh, S.H.;Kim, M.S.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 1989
  • In this study, impact force and angular displacement of the pendulum were measured by the load cell and potentiometer. Mechanical behavior of rough rice under impact loading was able to analyze precisely and efficiently, because measured data were accumulated and handled by the automatic data acquisition system making use of microcomputer system. Impact force and angular displacement were measured with a resolutiln of 1/1500 seconds in time. Mechanical behavior such as force and energy at rupture point of Japonica type and Indica type rough rice were measured with this system. After impact loading, the damage of rough rice was examined with the microphotograph and an allowable impact force was measured. The results obtained in this study are summarized as follows. 1. Machanical behavior of rough rice under impact loading was analyzed precisely and efficiently because measured data were accumulated and handled by this data acquisition system. 2. Rupture force and rupture energy of rough rice were appeared to be the lowest value in the range of 16 to 18 % moisture content, and rupture force and rupture energy of Japonica type were higher than those of Indica type in each level of moisture content. 3. From the result of the damage examined after the impact loading, allowable impact force was the lowest in the range of 16 to 18 % moisture content, and the value of the allowable impact force of Japonica type was higher than that of Indica type in each level of moisture content.

  • PDF

Size Effect on the Modulus of Rupture in Automotive Ceramic Monolithic Substrate using Optimization and Response Surface Method (반응표면법과 최적화방법을 이용한 자동차 세라믹 모노리스 담체의 파단계수에 미치는 치수효과)

  • Baek, Seok-Heum;Shin, Soon-Gi;Joo, Won-Sik;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1392-1400
    • /
    • 2006
  • Since the monolithic ceramic substrate was in introduced for automotive catalytic converters, the durability of the substrate has been a continuing requirement to reduce the emission, gas of vehicle. The substrate can occupy a volume as small as 82 $cm^3$ and as large as 8200 $cm^3$ to provide the required substrate for catalytic activity. The long-term durability varies with the size of the substrate from manufacture's point of view. Therefore this study presents that the response surface model using central composite design can explain size effect on the modulus of rupture in a cordierite ceramic monolithic substrate.