• Title/Summary/Keyword: runoff-water

Search Result 2,674, Processing Time 0.027 seconds

Quantitative Estimation of Nonpoint Source Load by BASINS/HSPF (BASINS/HSPF 모형을 활용한 비점오염부하의 정량적 평가)

  • Lee, Jae-Woon;Kwon, Hun-Gak;Yi, Youn-Jeong;Yoon, Jong-Su;Han, Kun-Yeun;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.965-975
    • /
    • 2012
  • Loading of NPS pollutant was valued through simulation by using BASINS/HSPF model which can simulate runoff volume in rainfall by time. For the verification of the model, it was analyzed the scatter diagram of the simulation value and measure value of water quality and runoff volume in Dongcheon estuary. Using the built model, a study on the time-variant characteristics of runoff and water quality was simulated by being classified into four cases. The result showed the simulation value was nearly same as that of the measured runoff. In the result of fit level test for measured value and simulated value, correlation of runoff volume was computed high by average 0.86 and in the water quality items, fit level of simulation and measurements was high by BOD 0.82, T-N 0.85 and T-P 0.79.

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Runoff Loading on Nutrients from a Paddy Field during Non-Cropping Season (비영농기간 단일필지 논으로부터 영양물질의 유출부하량)

  • 조재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.63-70
    • /
    • 2000
  • The present study was carried out for 7-months (from October 1.1997 to April 30. 1998) at a rice cultivation area blocked from livestock farming, farmstead and industrial complex to investigate the runoff loading of nitrogen and phosphorus in a plot(5,000$m^2$) paddy field areas. The runoff loading of total-N, amminia-N nitrate-N and total-P were 12.96kg/ha, 5.42kg/ha, 1.52kg/ha and 1.41kg/ha , respectively. When the runoff loading of nutrients was compared by dissolved and adsorbed forms, about 66% of total-N by dissolved form and the rest 34% by adsorbed form were flowed into streams. But 56% of total-P by adsorbed form and the rest 44% by dissolved form were flowed into streams. The phosphrous compounds , which were flowed into streams by runoff sediments and then sedimented, keep exchanging with water at water body in undelivered condition. And it moves gradually into water layer. This process can cause eutrophication continually and repeatedly in water environment . So, a sound program is needed to reduce soil erosion from farmlands.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Evaluation of Estimated Storm runoff and Non-point Pollutant Discharge from Upper Watershed of Daecheong Reservoir during Rainy Season using L-THIA ArcView GIS Model (L-THIA ArcView GIS 모형을 이용한 대청호 만입부 유역의 직접유출 및 비점오염배출부하 산정 적용성 평가)

  • Choi, Jaewan;Lee, Hyuk;Shin, Dong-Seok;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.984-993
    • /
    • 2009
  • There have been growing concerns of algal growth at Daecheong reservoir due to eutrophication with excess nutrient inflow. Rainfall-driven runoff and pollutant from watershed are responsible for eutrophication of the Daecheong reservoir. In this study, two subwatersheds of the Daecheong reservoir were selected and water quality characteristics were analyzed. The L-THIA ArcView GIS model was used for evaluation of direct runoff and water quality. The $R^2$ and the EI value for direct runoff were 0.95 and 0.93 at Wol-oe watershed and were 0.81, 0.71 at An-nae watershed, respectively. The $R^2$ for SS, T-P were 0.53, 0.95 at Wol-oe watershed and 0.89, 0.89 at An-nae watershed, respectively. It has been proven that the L-THIA ArcView GIS model could be used for evaluating direct runoff and pollutant load from the watershed with reasonable accuracies.

Development on an Automatic Calibration Module of the SWMM for Watershed Runoff Simulation and Water Quality Simulation (유역유출 및 수질모의에 관한 SWMM의 자동 보정 모듈 개발)

  • Kang, Taeuk;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.343-356
    • /
    • 2014
  • The SWMM (storm water management model) has been widely used in the world and is a watershed runoff simulation model used for a single event or a continuous simulation of runoff quantity and quality. However, there are many uncertain parameters in the watershed runoff continuous simulation module and the water quality module, which make it difficult to use the SWMM. The purpose of the study is to develop an automatic calibration module of the SWMM not only for watershed runoff continuous simulation, but also water quality simulation. The automatic calibration module was developed by linking the SWMM with the SCE-UA (shuffled complex evolution-University of Arizona) that is a global optimization algorithm. Estimation parameters of the SWMM were selected and search ranges of them were reasonably configured. The module was validated by calibration and verification of the watershed runoff continuous simulation model and the water quality model for the Donghyang Stage Station Basin. The calibration results for watershed runoff continuous simulation model were excellent and those for water quality simulation model were generally satisfactory. The module could be used in various studies and designs for watershed runoff and water quality analyses.

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • Kim, Gwang-Seob;Sun, Mingdong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF

Development of Combination Runoff Model Applied by Genetic Algorithm (유전자 알고리즘을 적용한 혼합유출모형의 개발)

  • Shim, Seok-Ku;Koo, Bo-Young;Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.201-212
    • /
    • 2009
  • The Tank model and the PRMS(Precipitation Runoff Modeling-modular System) model have been adopted to simulate runoff data from 1981 to 2001 year in the Seomgin-dam basin. However, the simulated runoff by each single model showed some deviations compared with the observed runoff, respectively. In this study a genetic algorithm combination runoff model has been proposed to minimize deviations between simulated runoff and observed runoff that should yield from single model such as Tank model or PRMS model. The proposed combination runoff model combining the simulated respective output of the Tank model and the PRMS model is to produce the optimum combination ratio of each single model applying to the genetic algorithm which may yield the minimum deviations between simulated runoff and observed one. The proposed combination runoff model has been applied to the Seomgin-dam basin. It has also been shown that the combination model by introducing optimal combination ratio should yield less deviations than single model such as the Tank model or the PRMS model.

Estimation of runoff coefficient through impervious covers analysis using long-term outflow simulation (장기유출 모의를 통한 도시유역 불투수율에 따른 유출계수 변화)

  • Kim, Young-Ran;Hwang, Sung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.635-645
    • /
    • 2014
  • The changes of rainfall pattern and impervious covers have increased disaster risks in urbanized areas. Impervious covers such as roads and building roofs have been dramatically increased. So, it is falling the ability safety of flood defense equipments to exist. Runoff coefficient means ratio of runoff by whole rainfall which is able to directly contribute at surface runoff during rainfall event. The application of accurate runoff coefficients is very important in sewer pipelines design. This study has been performed to estimate runoff characteristics change which are applicable to the process of sewer pipelines design or various public facilities design. It has used the SHER model, a long-term runoff model, to analyze the impact of a rising impervious covers on runoff coefficient change. It thus analyzed the long-term runoff to analyze rainfall basins extraction. Consequently, it was found that impervious surfaces could be a important factor for urban flood control. We could suggest the application of accurate runoff coefficients in accordance to the land Impervious covers. The average increase rates of runoff coefficients increased 0.011 for 1% increase of impervious covers. By having the application of the results, we could improve plans for facilities design.

Annual Runoff Loading of Nitrogen and Phosphorus from a Paddy Field

  • Han, Kang-Wan;Cho, Jae-Young;Choi, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.29-33
    • /
    • 1999
  • The present study examined annual runoff loading of nitrogen and phosphorus in the paddy field from 1 May, 1997 to 30 April, 1998. In the investigated area, the amount of rainfall was 1,095.6 mm and 414.6 mm during cropping season and non-cropping season. The annual rainfall was 1,510.2 mm. The total amount of runoff water was 1,043.2 mm and 281.0mm during cropping season and non-cropping season, and the added total amount of runoff water during two seasons was 1,324.2 mm. The runoff loading of nutrients caused by runoff water was measured as follows. The total-N was 149.23 and $8.67kg\;ha^{-1}$ (total amount=$157.90kg^{-1}ha^{-1}yr^{-1}$), the ammonia-N 102.98 and $4.44kg\;ha^{-1}$ ($107.42kg^{-1}ha^{-1}yr^{-1}$), the nitrate-N 28.45 and $1.23kg\;ha^{-1}$ ($29.68kg^{-1}ha^{-1}yr^{-1}$), the total-P 4.16 and $0.38kg\;ha^{-1}$ ($4.54kg^{-1}ha^{-1}yr^{-1}$) during cropping and non-cropping season respectively. When the loss ratio was calculated based on amounts of chemical fertilizer, about 68.6% of nitrogen and 16.7% of phosphorus was lost by runoff from applied fertilizer amount.

  • PDF