• Title/Summary/Keyword: ruminal fermentation

Search Result 372, Processing Time 0.027 seconds

Effects of Dietary Herbaceous Peat on In Vitro Fermentation and Milk Production in Dairy Cows (허브부식토의 사료내 첨가에 따른 In Vitro 발효특성과 젖소의 유생산성에 미치는 영향)

  • Kim, Hyeon-Shup;Park, Joong-Kook;Kim, Hong-Yun;Kim, Sang-Bum;Yang, Seung-Hak;Kim, Chang-Hyun;Ahn, Jong-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.177-190
    • /
    • 2011
  • This study was conducted to determine effects of dietary herbaceous peat on in vitro fermentation and milk production in dairy cows. Ruminal pH, gas production, VFA (volatile fatty acid), Ammonia-N, and rumen degradability were examined by the addition of three times over 0, 1, and 5% herbaceous peat with substrate of timothy hay, and the change of rumen fermentation characteristics were evaluated. In 0, 3, 12 and 24 hours cultivation, all treatments did not show a significant difference but the control at 6 hours appeared significantly lower pH compared to 1 and 5% treatments (p<0.05). The gas production of the treatments significantly increased until 12 hours of cultivation compared to control (p<0.05), the rumen ammonia concentration showed a tendency to increase until 24 hours in all treatment groups, and there was no significant difference between treatments. About the rumen degradability, 5% treatment showed higher rumen degradability in all hours than control and 1% treatment (p<0.05). Meanwhile, for in vivo trial, 16 heads of Holstein lactation dairy cows were selected for experiment for four weeks in order to research the change of milk yield, milk compositions and change of somatic cell counts of lactation dairy cows by herbaceous peat feeding. The milk yield of vitamin C and herbaceous peat treatments (T3) was 25.0 kg but the control was 23.2 kg, herbaceous peat treatment (T1) was 23.1 kg, and vitamin C treatment (T2) was 23.4 kg, so there was linear increase effect of milk yield by T3. The partial significance of the milk (fat, milk protein, lactose, MUN and SNF) and change of somatic cell count before and after experiment by the control and treatments about change of milk and somatic cell counts (p<0.05) were recognized. About change of milk in the first half (1~2 weeks) and latter half (3~4 weeks) during four weeks of experiments period, the herbaceous peat supplement treatments showed a tendency of significant decrease of quality of milk protein and SNF. The control and treatments did not show significant change of blood nutrients (total protein, cholesterol, NEFA, BUN), liver function component (AST, GGT) and minerals (Ca, P, Mg) before and after experiment. In summary, it is judged that herbaceous peat feeding for lactation dairy cows would be recommendable based on the results of milk, somatic cell count physiologically.

Effects of Supplementation of Spent Mushroom(Flammulina velutipes) Substrates on the in vitro Ruminal Fermentation Characteristics and Dry Matter Digestibility of Rye Silage (호밀 사일리지 제조 시 팽이버섯 수확 후 배지 첨가수준이 in vitro 반추위 발효특성 및 건물소화율에 미치는 영향)

  • Kang, Han-Byeol;Cho, Woong-Ki;Cho, Soo-Jeong;Lee, Shin-Ja;Lee, Sung-Sill;Moon, Yea-Hwang
    • Journal of agriculture & life science
    • /
    • v.51 no.5
    • /
    • pp.91-101
    • /
    • 2017
  • The in vitro experiment was conducted to ensure the supplemental level of spent Flammulina velutipes mushroom substrates(SMS) as an energy source in manufacturing of rye silage. Rye harvested at heading stage was ensiled with spent mushroom substrates of 0%(Control), 20%(R-20), 40%(R-40) and 60%(R-60) as fresh matter basis for 6week. The rumen fluid for preparation of in vitro solution was collected from two cannulated Holstein bulls fed a 40:60 concentrate:timothy diet. The experiment was conducted by 3, 6, 9, 12, 24, and 48 hrs of ncubation time with 3 replications. The silages were evaluated fermentation characteristics and dry matter digestibility(DMD) in vitro. The pH of in vitro solution was inclined to decrease with elapsing the incubation time, and that of the R-60 was significantly(p<0.05) lower than the other treatment at 48 hr of incubation. The microbial growth in vitro was inclined to increase with elapsing the incubation time, and that of the R-20 was significantly(p<0.05) greater than the Control at 48 hr of incubation. Gas production was greater(p<0.05) in the Control than the other treatments at 48 hr of incubation. In vitro dry matter digestibility(IVDMD) was higher with increasing the supplemental level of SMS, and was significantly(p<0.05) lower in the Control compared with other treatments throughout whole incubation time. The IVDMD for R-60 was the highest(p<0.05) among treatments at 24 hr and 48 hr of incubation. Considering of above results and the availability of SMS, SMS could be supplemented by 60% in fresh matter basis for rye silage fermentation.

Effects of Addition Level and Chemical Type of Propionate Precursors in Dicarboxylic Acid Pathway on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro

  • Li, X.Z.;Yan, C.G.;Choi, S.H.;Long, R.J.;Jin, G.L.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.82-89
    • /
    • 2009
  • Two in vitro experiments were conducted to examine the effects of propionate precursors in the dicarboxylic acid pathway on ruminal fermentatation characteristics, $CH_4$ production and degradation of feed by rumen microbes. Fumarate or malate as sodium salts (Exp. 1) or acid type (Exp. 2) were added to the culture solution (150 ml, 50% strained rumen fluid and 50% artificial saliva) to achieve final concentrations of 0, 8, 16 and 24 mM, and incubated anaerobically for 0, 1, 3, 6, 9 and 12 h at $39^{\circ}C$. For both experiments, two grams of feed consisting of 70% concentrate and 30% ground alfalfa (DM basis) were prepared in a nylon bag, and were placed in a bottle containing the culture solution. Addition of fumarate or malate in both sodium salt and acid form increased (p<0.0001) pH of culture solution at 3, 6, 9 and 12 h incubations. The pH (p<0.0001) and total volatile fatty acids (VFA, p<0.05) were enhanced by these precursors as sodium salt at 3, 6 and 9 h incubations, and pH (p<0.001) and total VFA (p<0.01) from fumarate or malate in acid form were enhanced at a late stage of fermentation (9 h and 12 h) as the addition level increased. pH was higher (p<0.001) for fumarate than for malate as sodium salt at 3 h and 6 h incubations. Propionate ($C_3$) proportion was increased (p<0.0001) but those of $C_2$ (p<0.05) and $C_4$ (p<0.01 - p<0.001) were reduced by the addition of sodium salt precursors from 3 h to 12 incubation times while both precursors in acid form enhanced (p<0.011 - p<0.0001) proportion of $C_3$ from 6h but reduced (p<0.018 - p<0.0005) $C_4$ proportion at incubation times of 1, 3, 9 and 12 h. Proportion of $C_3$ was increased (p<0.05 - p<0.0001) at all incubation times by both precursors as sodium salt while that of $C_3$ was increased (p<0.001) from 6h but $C_4$ proportion was decreased by both precursors in acid form as the addition level increased. Proportion of $C_3$ was higher (p<0.01 - p<0.001) for fumarate than malate as sodium salt from 6 h incubation but was higher for malate than fumarate in acid form at 9 h (p<0.05) and 12 h (p<0.01) incubation times. Increased levels (16 and 24 mM) of fumarate or malate as sodium salt (p<0.017) and both precursors in acid form (p<0.028) increased the total gas production, but no differences were found between precursors in both chemical types. Propionate precursors in both chemical types clearly reduced (p<0.0001 - p<0.0002) $CH_4$ production, and the reduction (p<0.001 - p<0.0001) was dose dependent as the addition level of precursors increased. The $CH_4$ generated was smaller (p<0.01 - p<0.0001) for fumarate than for malate in both chemical types. Addition of fumarate or malate as sodium type reduced (p<0.004) dry matter degradation while both precursors in both chemical types slightly increased neutral detergent fiber degradability of feed in the nylon bag.

Effects of spent mushroom (Flammulina velutipes) substrates on in vitro ruminal fermentation characteristics and digestibility of whole crop sorghum silage (팽이버섯 수확후배지 첨가가 수수 사일리지의 in vitro 반추위 발효특성 및 소화율에 미치는 영향)

  • Moon, Yea Hwang;Chang, Sun Sik;Kim, Eun Tae;Cho, Woong Gi;Lee, Shin Ja;Lee, Sung Sil;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.163-169
    • /
    • 2015
  • The in vitro experiment was conducted to ensure the supplemental level of spent Flammulina velutipes mushroom substrates (SMS) as an energy source in manufacturing of whole crop sorghum silage. Sorghum harvested at heading stage was ensiled with spent mushroom substrates of 20% (S-20), 40% (S-40) and 60% (S-60) as fresh matter basis for 6 week. The experiment was conducted by 3, 6, 9, 12, 24, 48 hrs of incubation time with 3 replications. The silages were evaluated fermentation characteristics and dry matter digestibility (DMD) in vitro. The pH of in vitro solution was inclined to decrease with elapsing the incubation time, and that of the S-20 was significantly (P<0.05) lower than the other treatment at 48 hr of incubation. Gas production was greater (P<0.05) in the S-20 than the other treatments at 6 and 12 hrs of incubation. The microbial growth in vitro was inclined to decrease following 24 hr of incubation, and thereafter sustained the similar levels. In vitro dry matter digestibility (IVDMD) was lowered by increasing the supplemental level of spent mushroom substrate, and was a low level in the S-60 throughout whole incubation time. Although the IVDMD for S-40 was steadily increased from 9 hr of incubation and reached to similar level with the S-20 at 48 hour of incubation, however SMS for whole crop sorghum silage fermentation might as well add about 20 to 30% in fresh matter basis when considering DMD.

Effect of Microbial Additives on Metabolic Characteristics in Sheep and Milking Performance of Lactating Dairy Cows (미생물제제의 첨가가 면양의 반추대사 및 젖소의 유생산성에 미치는 영향)

  • Kim, G.L.;Choi, S.K.;Choi, S.H.;Song, M.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.819-828
    • /
    • 2007
  • Two experiments were conducted to observe the effects of direct fed microbials on metabolic characteristics in sheep and milking performance in dairy cows. A metabolic trial with four ruminally cannulated sheep(60±6kg) was conducted in a 4×4 Latin square design to investigate the supplementation effects of Saccharomyces cerevisiae, Clostridium butyricum or mixed microbes of S. cerevisiae and C. butyricum on ruminal fermentation characteristics and whole tract digestibility. Sheep were fed 1.25 kg of total mixed ration(TMR, DM basis) supplemented with S. cerevisiae (2.5g/day), C. butyricum (1.0g/day) or its mixture(S. cerevisiae 1.25g/day+C. butyricum 1g/day), twice daily in an equal volume. But control sheep were fed only TMR. A feeding trial with 28 lactating Holstein cattle was also conducted for 12 weeks to investigate the effects of the same microbial supplements as for the metabolic trial on milking performance. The cows were fed the TMR(control), and fed S. cerevisiae(50g/day), C. butyricum(15g/day) or its mixture (S. cerevisiae 25g/day + C. butyricum 7.5g/day) with upper layer dressing method. Total VFA concentration and the digestibility of whole digestive tract in the sheep increased by supplementation of S. cerevisiae, C. butyricum or their combined microbials compare to control group. The proportion of propionic acid at 1h(P<0.039) and 3h(P<0.022) decreased by supplementation of S. cerevisiae while tended to increase acetic acid proportion at the same times. Daily dry matter intake(DMI) was not influenced by the microbial treatments, but milk yield(P<0.031) and feed efficiency(milk yield/DMI, P<0.043) were higher for the cow received C. butyricum than those for other treatments. The milk fat content was higher (P<0.085) when cows fed S. cerevisiae(4.11%) than that fed the control (4.08%), the diets with C. butyricum (3.85%) and the microbial mixture. Based on the results obtained from the current experiments, supplementation of C. butyricum or mixture with S. cerevisiae might be increased milk fat content and milk productivity of lactating daily cows. (Key words:Saccharomyces cerevisiae, Clostridium butyricum, Fermentation characteristics,

Feed Evaluation of Whole Crop Rice Silage Harvested at Different Mature Stages in Hanwoo Steers Using In Situ Technique (In situ 방법을 이용한 수확시기별 총체벼 사일리지의 한우 생체 사료가치 평가)

  • Choi, Chang-Weon;Chung, Eui-Soo;Hong, Seong-Koo;Oh, Young-Kyoon;Kim, Jong-Geun;Lee, Sang-Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Three Hanwoo steers (BW $623{\pm}18.5kg$) with ruminal and duodenal cannulae were used to investigate nutrients degradability and total digestible nutrient (TDN) of whole crop rice silage (WRS) harvested at different mature stages using in situ technique. Crude protein content (mean 4.81%) decreased with progressed maturity at harvest except for WRS harvested at yellow stage. Ruminal dry matter degradability of WRS at milk stage tended to be slightly lower than that of the other stages during the entire incubation time from 12 h post-incubation. The rapidly degradable N (a-fraction) of WRS harvested at milk stage was significantly (p<0.05) higher than that of WRS at dough stage whereas the slowly degradable N (b-fraction) of WRS harvested at yellow and dough stages were statistically (p<0.05) higher than those of the other WRS. Effective protein degradability (EPD) of WRS harvested at yellow stage was numerically (compared with dough and milk stages) and statistically (compared with mature stage) higher than EPD of the other WRS. Protein digestibility of WRS at different gastric tracts did not differ (p>0.05) between the harvest stages. TDN of WRS harvested at yellow stage in Hanwoo steers was statistically (compared with milk stage) and numerically (compared with dough and mature stages) higher than TDN of the other WRS. Overall, taking present feed evaluation into consideration, WRS harvested at yellow stage may be recommended for Hanwoo steers. Further studies on in vivo rumen fermentation pattern and minimizing nutrients loss during harvest should be required for accurate feed evaluation.

Effects of Processing Methods of Corn and their Thickness on in situ Dry Matter Degradability and in vitro Methane Production (옥수수 가공방법 및 두께가 in situ 건물 분해율과 in vitro 메탄 발생에 미치는 영향)

  • Kim, Do Hyung;Lee, Chang Hyun;Woo, Yang Won;Rajaraman, Bharanidharan;Kim, Jong Nam;Cho, Kwang Hyeon;Jang, Sun Sik;Kim, Kyoung Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.308-314
    • /
    • 2017
  • This study was conducted with two ruminally cannulated Holstein steers to examine the effect of micronized and steam flaked corn on ruminal fermentation characteristics. The in situ dry matter degradability after 48 h incubation was the highest (P<0.05) at micronized corn (2.5 mm thickness) compared with steam flaked corn treatments. The steam flacked corn (3.3 mm thickness) was degraded lower (P<0.05) than the 2.9 and 3.1 mm thickness of steam flacked corn. Effective dry matter degradability and the rate of constant were the highest (P<0.05) at micronized corn (2.5 mm thickness) compared with steam flaked corns as well. The in vitro dry matter degradability after 48 h incubation was tended to higher (P=0.088) at micronized corn (2.5 mm thickness) than steam flaked corns, whereas there is no significantly difference between steam flaked corn treatments. Total volatile fatty acid concentration was higher at steam flaked corn (2.9 mm thickness) than micronized corn (2.5 mm thickness) and steam flaked corn (3.1 and 3.3 mm thickness). The acetate : propionate ratio was the highest (P=0.008) at steam flaked corn (2.9 mm thickness) and the lowest (P=0.008) at micronized corn (2.5 mm thickness). Total gas and methane production after 48h ruminal incubation was the highest (P=0.001) at micronized corn (2.5 mm thickness) compared with steam flaked corns. According to these results, the thickness of steam flaked corn as resulted corn processing is believed to do not affect methane production. However, further study is needed to better understand the present results to verify the correlation between corn processing method and their thickness on methane production using the same thickness corns by difference processing methods.

Effect of Tannins in Acacia nilotica, Albizia procera and Sesbania acculeata Foliage Determined In vitro, In sacco, and In vivo

  • Alam, M.R.;Amin, M.R.;Kabir, A.K.M.A.;Moniruzzaman, M.;McNeill, D.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.220-228
    • /
    • 2007
  • The nutritive value and the effect of tannins on the utilization of foliage from three commonly used legumes, Acacia nilotica, Albizia procera, and Sesbania acculeata, were determined. Three mature rumen-fistulated bullocks were used to study in sacco degradability and twelve adult sheep were randomly allocated on the basis of live weight to 4 groups of 3 in each to study the in vivo digestibility of the foliages. In all foliages, the contents of crude protein (17 to 24% of DM) were high. Fibre was especially high in Albizia (NDF 58.8% of DM vs. 21% in Sesbania and 15.4% in Acacia). Contents of both hydrolysable (4.4 to 0.05%) and condensed tannins (1.2 to 0.04%) varied from medium to low in the foliages. Acacia contained the highest level of total phenolics (20.1%), protein precipitable phenolics (13.2%) and had the highest capacity to precipitate protein (14.7%). Drying in shade reduced the tannin content in Acacia and Albizia by 48.6 and 69.3% respectively. The foliages ranked similarly for each of the different methods used to estimate tannin content and activity. Acacia and Sesbania foliage was highly degradable (85-87% potential degradability of DM in sacco), compared to Albizia (52%), indicating a minimal effect of tannins in Acacia and Sesbania. Yet, in vitro, the tannins in the Acacia inhibited microbial activity more than those in Albizia and Sesbania. Following the addition of polyethylene glycol to neutralise the tannins, gas production and microbial growth increased by 59% and 0.09 mg RNA equiv./dg microbial yield respectively in the Acacia, compared to 16-17% and 0.06 mg RNA equiv./dg microbial yield in the other foliages. There was a trend for low in vivo apparent digestibility of N in the Acacia (43.2%) and Albizia (44.2%) compared to the Sesbania (54.5%) supplemented groups. This was likely to be due to presence of tannins. Consistent with this was the low N retention (0.22 and 0.19 g N/g NI) in sheep supplemented with Acacia and Albizia compared to that for the Sesbania (0.32). Similarly, a trend for poor microbial N yield was observed in sheep fed these foliages. Across the foliages tested, an increase in tannin content was associated with a reduction in ruminal fermentation, N digestibility and N retention. For overall nutritive value, Sesbania proved to be the superior forage of the three tested.

Effects of Concentrate to Roughage Ratio on the Formation of cis-9, trans-11 CLA and trans-11-Octadecenoic Acid in Rumen Fluid and Plasma of Sheep When Fed High Oleic or High Linoleic Acid Oils

  • Wang, J.H.;Choi, S.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1604-1609
    • /
    • 2003
  • A metabolism trial with four ruminally fistulated sheep was conducted in a $4{\times}4$ Latin square design to examine the effect of concentrate to roughage ratio (70:30 vs. 85:15) and oil source (soybean oil vs. rapeseed oil) on the ruminal fermentation pattern and $C_{18}$-fatty acids composition including trans11-$C_{18:1}$ (trans11-ODA) and cis9, trans11-18:2 (cis9, trans11-CLA) in the rumen fluid and plasma. Oil was added to the concentrate at 5% level of the total diet (DM basis) and chopped rye grass hay was fed as roughage. An increased level of concentrate (85%) within supplemented oil slightly lowered pH but increased ammonia concentration. Supplementation of rapeseed oil relatively increased pH and ammonia concentration. Higher concentrate level resulted in increased tendencies of total VFA concentration while oil source did not affect the total VFA concentration and VFA proportion. Whole tract digestibilities of DM, CP, EE, NDF and OM in diets slightly increased at higher concentrate level. Proportions of oleic acid ($C_{18:1}$) and linoleic acid ($C_{18:2}$) in the rumen fluid were influenced by the fatty acid composition of oil source but oil source did not affect the in vitro formations of trans11-ODA and cis9, trans11-CLA. Slightly increased trans11-ODA and cis9, trans11-CLA proportions, however, were observed from the sheep fed high roughage diet supplemented with both soybean oil and rapeseed oil. The $C_{18:1}$ and $C_{18:2}$ composition in supplemented oils responded to those in plasma of sheep. Effects of concentrate to roughage ratio and oil source on trans11-ODA and cis9, trans11-CLA proportions in plasma were found to be small. Proportion of cis9, trans11-CLA in plasma tended to be increased from the sheep fed high roughage diet and collection time at 9h post feeding.

Shrub coverage alters the rumen bacterial community of yaks (Bos grunniens) grazing in alpine meadows

  • Yang, Chuntao;Tsedan, Guru;Liu, Yang;Hou, Fujiang
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.504-520
    • /
    • 2020
  • Proliferation of shrubs at the expense of native forage in pastures has been associated with large changes in dry-matter intake and dietary components for grazing ruminants. These changes can also affect the animals' physiology and metabolism. However, little information is available concerning the effect of pastoral-shrub grazing on the rumen bacterial community. To explore rumen bacteria composition in grazing yaks and the response of rumen bacteria to increasing shrub coverage in alpine meadows, 48 yak steers were randomly assigned to four pastures with shrub coverage of 0%, 5.4%, 11.3%, and 20.1% (referred as control, low, middle, and high, respectively), and ruminal fluid was collected from four yaks from each pasture group after 85 days. Rumen fermentation products were measured and microbiota composition determined using Ion S5™ XL sequencing of the 16S rRNA gene. Principal coordinates analysis (PCoA) and similarity analysis indicated that the degree of shrub coverage correlated with altered rumen bacterial composition of yaks grazing in alpine shrub meadows. At the phyla level, the relative abundance of Firmicutes in rumen increased with increasing shrub coverage, whereas the proportions of Bacteroidetes, Cyanobacteria and Verrucomicrobia decreased. Yaks grazing in the high shrub-coverage pasture had decreased species of the genus Prevotellaceae UCG-001, Lachnospiraceae XPB1014 group, Lachnospiraceae AC2044 group, Lachnospiraceae FCS020 group and Fretibacterium, but increased species of Christensenellaceae R-7 group, Ruminococcaceae NK4A214 group, Ruminococcus 1, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005 and Lachnospiraceae UCG-008. These variations can enhance the animals' utilization efficiencies of cellulose and hemicellulose from native forage. Meanwhile, yaks grazed in the high shrub-coverage pasture had increased concentrations of ammonia nitrogen (NH3-N) and branched-chain volatile fatty acids (isobutyrate and isovalerate) in rumen compared with yaks grazing in the pasture without shrubs. These results indicate that yaks grazing in a high shrub-coverage pasture may have improved dietary energy utilization and enhanced resistance to cold stress during the winter. Our findings provide evidence for the influence of shrub coverage on the rumen bacterial community of yaks grazing in alpine meadows as well as insights into the sustainable production of grazing yaks on lands with increasing shrub coverage on the Qinghai-Tibet Plateau.