Effects of spent mushroom (Flammulina velutipes) substrates on in vitro ruminal fermentation characteristics and digestibility of whole crop sorghum silage

팽이버섯 수확후배지 첨가가 수수 사일리지의 in vitro 반추위 발효특성 및 소화율에 미치는 영향

  • Moon, Yea Hwang (Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Chang, Sun Sik (Hanwoo Research Institute, National Institute of Animal Science, RDA) ;
  • Kim, Eun Tae (Department Animal Resource Development, National Institute of Animal Science, RDA) ;
  • Cho, Woong Gi (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Shin Ja (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Sung Sil (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Soo Jeong (Department of Phamaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 문여황 (경남과학기술대학교 동물생명과학과) ;
  • 장선식 (농촌진흥청 한우시험장) ;
  • 김언태 (농촌진흥청 축산과학원) ;
  • 조웅기 (경상대학교 응용생명과학부) ;
  • 이신자 (경상대학교 응용생명과학부) ;
  • 이성실 (경상대학교 응용생명과학부) ;
  • 조수정 (경남과학기술대학교 제약공학과)
  • Received : 2015.08.03
  • Accepted : 2015.09.30
  • Published : 2015.09.30


The in vitro experiment was conducted to ensure the supplemental level of spent Flammulina velutipes mushroom substrates (SMS) as an energy source in manufacturing of whole crop sorghum silage. Sorghum harvested at heading stage was ensiled with spent mushroom substrates of 20% (S-20), 40% (S-40) and 60% (S-60) as fresh matter basis for 6 week. The experiment was conducted by 3, 6, 9, 12, 24, 48 hrs of incubation time with 3 replications. The silages were evaluated fermentation characteristics and dry matter digestibility (DMD) in vitro. The pH of in vitro solution was inclined to decrease with elapsing the incubation time, and that of the S-20 was significantly (P<0.05) lower than the other treatment at 48 hr of incubation. Gas production was greater (P<0.05) in the S-20 than the other treatments at 6 and 12 hrs of incubation. The microbial growth in vitro was inclined to decrease following 24 hr of incubation, and thereafter sustained the similar levels. In vitro dry matter digestibility (IVDMD) was lowered by increasing the supplemental level of spent mushroom substrate, and was a low level in the S-60 throughout whole incubation time. Although the IVDMD for S-40 was steadily increased from 9 hr of incubation and reached to similar level with the S-20 at 48 hour of incubation, however SMS for whole crop sorghum silage fermentation might as well add about 20 to 30% in fresh matter basis when considering DMD.

본 시험은 팽이버섯 수확후배지 첨가비율(20, 40, 60%)에 따라 제조된 사일리지를 in vitro 반추위 발효실험을 통하여 버섯수확후배지의 적정 첨가수준을 규명하고자 수행되었다. In vitro 실험은 발효시간대를 3, 6, 9, 12, 24 및 48시간으로 설정하고, 각 처리구별로 3반복으로 발효 특성과 건물소화율이 측정되었다. In vitro 배양액의 pH는 배양시간이 길어짐에 따라 낮아지는 경향이었으며, 48시간 경과 시에는 버섯수확후배지 20%첨가구가 타 처리구에 비해 유의적(P<0.05)으로 낮았다. 가스발생량은 버섯 수확후배지 20%를 첨가한 S-20구의 6시간 및 12시간 발효구가 타 처리구에 비해 유의적(P<0.05)으로 높게 나타났다. 미생물 성장량은 배양시간이 경과함에 따라 줄어드는 경향이었으며, 발효 24시간대부터는 대체로 비슷한 수준에서 유지되었다. 건물소화율은 20-30%수준으로 버섯수확후배지의 첨가비율이 높을수록 낮았는데, S-40구의 경우는 발효 9시간이후로 지속적으로 증가되어 48시간 발효 시에는 S-20구와 비슷한 수준이 된 반면, S-60구에서는 전 발효기간 동안 건물소화율이 매우 낮은 상태에 있었다. 이전 보고에서 사일리지 발효상태는 S-40구가 좋았으나 in vitro 반추위 소화시험의 결과를 고려할 때, 수수 사일리지 제조 시 팽이버섯수확후배지 첨가비율은 20-30%수준으로 하는 것이 적당할 것으로 판단된다.


Supported by : 농촌진흥청


  1. Ahn SK, Goo YM, Ko KH, Lee SJ, Moon YH, Lee SS, Kim JW, Lee SS. 2014a. Effects of herbal medicine byproducts on rumen fermentation characteristics in vitro. J Agric & Life Sci. 48:89-100.
  2. Ahn SK, Goo YM, Ko KH, Lee SJ, Moon YH, Lee SS, Kim JW, Lee SS. 2014b. Study on the evaluation of nutritional values and antioxidant activities for herbal medicine by-products. J Agric & Life Sci. 48:101-110.
  3. A.O.A.C. 1995. Official methods of analysis 16th edition. Association of official analytical chemists, Washington. D.C.
  4. Bae JS, Kim YI, Jung SH, Oh YG, Kwak WS. 2006. Evaluation on feed-nutritional value of spent mushroom (Pleurotus osteratus, Pleurotus eryngii, Flammulina velutupes) substrates as a roughage source for ruminants. J Anim Sci & Technol Kor. 48:237-246.
  5. Beuvink JMW, Spoelstra SF. 1992. Interactions between substrate, fermentation end-products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl Microbiol Biotechnol. 37:505-509.
  6. Blaxter KL, Clapperton JL. 1965. Prediction of the amount of methane produced by ruminants. Br J Nutr. 19:511-522.
  7. Bryant MP, Burkey LA. 1953. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J Dairy Sci. 36:205-217.
  8. Choi KC, Song CE. 2011. Effects of Harvest Stages and Ensiling method on nutritive values and quality of sorghum$\times$sorghum hybrid silage. J Kor Grassl Forage sci. 31:295-304.
  9. Dehority BA. 1965. Degradation and utilization of isolated hemicellulose by pure cultures of cellulolytic rumen bacteria. J Bacteriol. 89:1515-1520.
  10. Dehority BA, Scott HW. 1967. Extent of cellulose and hemicellulose digestion in various forage by pure cultures of rumen bacteria. J Dairy Sci. 50:1136-1141.
  11. Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11:1-42.
  12. Ehaliotis C, Zervakis GI, Karavitis P. 2005. Residues and by-products of olive-oil mills for root-zone heating and plant nutrition in organic vegetable production. Sci Hortic. 106:293-308.
  13. Fedorak PM, Hrwdey SE. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ Technol Lett. 4:425-432.
  14. Georing HK, VanSoest PJ. 1970. Forage fiber analysis. Ag. Handbook. No. 379. ARS. USDA. Washington, D.C.
  15. Kim HS, Park JK, Kim HY, Kim SB, Shin YH, Kim CH, Ahn JH. 2011. Effects of dietary herbaceous peat on in vitro fermentation and milk production in dairy cows. J Kor Grassl Forage sci. 31:177-190.
  16. Kim JD, Lee HJ, Jeon KH, Yang KY, Kwon CH, Sung HG, Hwangbo S, Jo IH. 2010. Effect of harvest stage, wilting and crushed rice on the forage production and silage quality of organic whole crop barely. J Kor Grassl Forage sci. 30:25-34.
  17. Lee SJ, Lee JH, Shin NH, Han JH, Hyun JH, Moon YH, Lee SS. 2009. Effects of steam flaking of corns imported from USA and india on the in vitro fermentation characteristic and the mycotixin contents of logistic processing line. J Life Sci. 19:65-74.
  18. Lim HJ, Kim JD, Lee HJ, Jeon KH, Yang KY, Kwon CH, Yoon YS. 2009. Effect of pre-wilting on the forage quality of organic sorghum$\times$sudangrass silage. Korean J Organic Agri. 17:519-527.
  19. Moon YH, Kim SC, Cho WK, Lee SS, Cho SJ. 2014. Effects of supplementation of spent mushroom (Flammulina velutipes) substrates on the fermentative quality of rye silage. J Mushrooms 12:138-143.
  20. Moore, J.E. 1970. Procedures for the two-stage in vitro digestion of forages. in: p. 5501. Nutrition Research Techniques for Domestic and Wild Animals, Vol. 1. L.E. Harris, Utah State Univ., Logan.
  21. Mould FL, Orskov ER, Mann SO. 1983. Associative effects of mixed feeds. I. effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim Feed Sci Technol. 10:15-30.
  22. Nocek JE. 1988. In situ and other methods to estimate ruminal protein and energy digestibility. A review. J Dairy Sci. 71:2051-2069,
  23. SAS. 1999. SAS/STAT software for PC. Release 8.01. SAS institute Inc., Cary, N.C., U.S.A.
  24. Strobel HJ, Russell JB. 1986. Effect of pH and energy spilling on bacterial protein synthesis by carbohydratelimited cultures of mixed rumen bacteria. J Dairy Sci. 69:2941-2947.
  25. Theodorou MK, Lowman RS, Davies ZS, Cuddeford D, Owen E. 1998. Principles of techniques that rely on gas measurement in ruminant nutrition. In: Deaville ER, Owen E, Adesogan AT, Rymer C, Huntington JA, Lawrence TLJ. (Eds.), In vitro Techniques for Measuring Nutrient Supply to Ruminants. Occasional publication, No. 22 Bri Soc Anim Sci, pp. 55-64.
  26. Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 48:185-197.
  27. Tilley JMA, Terry RA. 1963. A two-sage technique for the in vitro digesiton of forage crops. J Brit Grassl Soc. 18:104-111.
  28. Williams BC, McMullan JT, McCahey S. 2001. An initial assessment of spent mushroom compost as a potential energy feedstock. Biores Technol. 79:227-230.
  29. Zinn RA. 1990. Influence of flake density on the comparative feeding value of steam-flaked corn for feedlot cattle. J Anim Sci. 68:767-775.
  30. Zinn RA, Adams CF, Tamayo MS. 1995. Interaction of feed intake level on comparative ruminal and total tract digestion of dry-rolled and steam-flaked corn. J Anim Sci. 73:1239-1245.